题目内容
2.已知数列{an}满足a1=1,an+1-2an=2n,(1)证明:数列{$\frac{{a}_{n}}{{2}^{n}}$}是等差数列,并求出{an}的通项公式;
(2)设bn=$\frac{(n+2){2}^{n-1}}{{a}_{n}{a}_{n+1}}$,{bn}的前n项和为Sn,求证:Sn<1.
分析 (1)由等式两边同除以2n+1,运用等差数列的定义和通项公式,即可得到所求;
(2)化简bn=$\frac{(n+1)•{2}^{n}-n•{2}^{n-1}}{{a}_{n}{a}_{n+1}}$=$\frac{{a}_{n+1}-{a}_{n}}{{a}_{n}{a}_{n+1}}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$,再由数列的求和方法:裂项相消求和,结合不等式的性质,即可得证.
解答 证明:(1)an+1-2an=2n,
两边同除以2n+1,可得
$\frac{{a}_{n+1}}{{2}^{n+1}}$-$\frac{{a}_{n}}{{2}^{n}}$=$\frac{1}{2}$,
可得数列{$\frac{{a}_{n}}{{2}^{n}}$}是首项为$\frac{1}{2}$,公差为$\frac{1}{2}$的等差数列;
即有$\frac{{a}_{n}}{{2}^{n}}$=$\frac{1}{2}$+$\frac{1}{2}$(n-1)=$\frac{1}{2}$n,
则an=n•2n-1;
(2)bn=$\frac{(n+2){2}^{n-1}}{{a}_{n}{a}_{n+1}}$=$\frac{(n+1)•{2}^{n}-n•{2}^{n-1}}{{a}_{n}{a}_{n+1}}$
=$\frac{{a}_{n+1}-{a}_{n}}{{a}_{n}{a}_{n+1}}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$,
则Sn=b1+b2+…+bn
=$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{2}}$-$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$
=$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{n+1}}$=1-$\frac{1}{(n+1)•{2}^{n}}$<1.
点评 本题考查等差数列的定义和通项公式的运用,考查构造法的运用,以及数列的求和方法:裂项相消求和,考查不等式的性质,属于中档题.
| A. | $\frac{2}{7}$ | B. | $\frac{3}{7}$ | C. | $\frac{4}{7}$ | D. | $\frac{5}{7}$ |
| A. | $\frac{{\sqrt{3}}}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{10}$ | D. | $\frac{1}{2}$ |
| A. | p∧q | B. | ¬p∨q | C. | p∨q | D. | ¬p∧q |
| A. | $-\frac{3}{2}+\frac{3}{2}i$ | B. | $-\frac{3}{2}-\frac{3}{2}i$ | C. | $-\frac{3}{2}+3i$ | D. | $-\frac{3}{2}-3i$ |
| A. | [$\frac{1}{3}$,2] | B. | B[-$\frac{1}{2}$,$\frac{1}{2}$] | C. | [$\frac{1}{2}$,$\frac{3}{2}$] | D. | [$\frac{3}{2}$,$\frac{5}{2}$] |