题目内容
设a、b∈z,且a≠0,则(a-b)a2<0,且a<b的( )条件.
| A、充分不必要 |
| B、必要而不充分 |
| C、充要 |
| D、既不充分也不必要 |
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据不等式的性质,结合充分条件和必要条件的定义即可得到结论.
解答:
解:∵a≠0,∴不等式(a-b)a2<0,等价为a-b<0,即a<b,
则“(a-b)a2<0”是“a<b”的充分必要条件,
故选:C
则“(a-b)a2<0”是“a<b”的充分必要条件,
故选:C
点评:本题主要考查充分条件和必要条件的判断,根据不等式的关系是解决本题的关键.
练习册系列答案
相关题目
已知抛物线x2=2py(p>0)的焦点为F,A,B,C都是抛物线上的点,满足
+
+
=
,则kAB+kBC+kAC=( )
| FA |
| FB |
| FC |
| 0 |
| A、0 | ||
B、
| ||
| C、1 | ||
| D、不能确定 |
如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别是( ) 
| A、25;25 |
| B、26;25 |
| C、26;26 |
| D、25;26 |