题目内容

设{an}是由正数组成的数列,其前n项和为Sn,且满足关系:Sn=
1
4
(an-1)(an+3)
(1)求数列{an}的通项公式;
(2)求Tn=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由于Sn=
1
4
(an-1)(an+3),当n≥2时,Sn-1=
1
4
(an-1-1)(an-1+3)
,两式相减并整理得:(an+an-1)•(an-an-1-2)=0,利用等差数列的通项公式即可得出.
(2)利用等差数列的前n项和公式可得Sn,再利用“裂项求和”即可得出Tn
解答: 解:(1)∵Sn=
1
4
(an-1)(an+3),
∴当n≥2时,Sn-1=
1
4
(an-1-1)(an-1+3)

两式相减并整理得:(an+an-1)•(an-an-1-2)=0,
∴an>0,
∴an-an-1=2,
∴数列{an}成等差数列  公差d=2,
又当n=1时,∴a1=S1=
1
4
(a1-1)(a1+3)

解得a1=3.
∴an=3+2(n-1)=2n+1.
(2)由(1)可得Sn=
n(3+2n+1)
2
=n(n+2).
1
Sn
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

Tn=
1
1•3
+
1
2•4
+
1
3•5
+…+
1
n(n+2)
=
1
2
•(1+
1
2
-
1
n+1
-
1
n+2
)

=
3
4
-
2n+3
2(n+1)(n+2)
点评:本题考查了递推式的应用、等差数列的通项公式及其前n项和公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网