题目内容

在四边形ABCD中,AB=AD,∠CAB=3∠CAD,∠ACD=∠CBD,则tan∠ACD=
 
考点:两角和与差的正切函数
专题:计算题,三角函数的求值
分析:令∠CAD=θ,∠BAC=3θ,∠CBD=∠ACD=φ,∠BCD=
π
2
-θ.在△ACD、△ABD、△BCD中,利用正弦定理,即可得出结论.
解答: 解:令∠CAD=θ,∠BAC=3θ,∠CBD=∠ACD=φ,∠BCD=
π
2
-θ.
在△ACD中,
AD
sinφ
=
CD
sinθ
,故CD=
ADsinθ
sinφ
(1);
在△ABD中,AB=AD,∠BAD=4θ,故BD=2ADsin2θ(2);
在△BCD中,
BD
sin(
π
2
-θ)
=
CD
sinφ
(3);
(1),(2)代入(3)得:sin2φ=
1
4

∴sinφ=
1
2

∴φ=
π
6

∴tanφ=
3
3

故答案为:
3
3
点评:本题考查角的计算,考查正弦定理,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网