题目内容
19.F1、F2分别为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,O为坐标原点,若双曲线左支上存在一点P,使($\overrightarrow{OP}$+$\overrightarrow{O{F}_{1}}$)•($\overrightarrow{{F}_{2}P}$-$\overrightarrow{{F}_{2}{F}_{1}}$)=0,且|$\overrightarrow{P{F}_{2}}$|=3|$\overrightarrow{P{F}_{1}}$|,则此双曲线的离心率为$\frac{\sqrt{10}}{2}$.分析 利用向量的数量积的性质可得|OP|=|OF2|=c=|OF1|,可得PF1⊥PF2,运用双曲线的定义和已知条件,可得|PF2|=3a,|PF1|=a,再由勾股定理和离心率公式计算即可得到所求值.
解答 解:由($\overrightarrow{OP}$+$\overrightarrow{O{F}_{1}}$)•($\overrightarrow{{F}_{2}P}$-$\overrightarrow{{F}_{2}{F}_{1}}$)=0,
可得$\overrightarrow{OP}$2-$\overrightarrow{O{F}_{1}}$2=0,
即有|OP|=|OF1|=c=|OF2|,
可得PF1⊥PF2,
Rt△PF1F2中,|$\overrightarrow{P{F}_{2}}$|=3|$\overrightarrow{P{F}_{1}}$|,
由双曲线的定义得|PF2|-|PF1|=2a,
即有|PF2|=3a,|PF1|=a,
由勾股定理可得|PF2|2+|PF1|2=|F1F2|2,
即4c2=9a2+a2,
化简可得2c2=5a2,
由离心率公式e=$\frac{c}{a}$=$\frac{\sqrt{10}}{2}$.
故答案为$\frac{\sqrt{10}}{2}$.
点评 本题考查双曲线的定义和双曲线的简单性质的应用,其中判断△PF1F2是直角三角形是解题的关键.
练习册系列答案
相关题目
10.设α,β是两个不同的平面,l是一条直线,以下命题正确的是( )
| A. | 若l⊥α,α⊥β,则 l?β | B. | 若l∥α,α∥β,则 l?β | ||
| C. | 若l⊥α,α∥β,则 l⊥β | D. | 若l∥α,α⊥β,则l⊥β |
8.在高中学习过程中,同学们经常这样说“如果物理成绩好,那么学习数学就没什么问题”某班针对“高中生物理对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论,现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如表:
(1)求数学y成绩关于物理成绩x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$(b精确到0.1),若某位学生的物理成绩为80分时,预测他的物理成绩.
(2)要从抽取的这五位学生中随机选出三位参加一项知识竞赛,以X表示选中的学生的数学成绩高于100分的人数,求随机变量X的分布列及数学期望.
(参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}n\stackrel{-2}{x}}$,$\stackrel{∧}{a}$=$\overline{y}$b$\overline{x}$,)参考数据:902+852+742+682+632=29394
90×130+85×125+74×110+68×95+63×90=42595.
| 编号 成绩 | 1 | 2 | 3 | 4 | 5 |
| 物理(x) | 90 | 85 | 74 | 68 | 63 |
| 数学(y) | 130 | 125 | 110 | 95 | 90 |
(2)要从抽取的这五位学生中随机选出三位参加一项知识竞赛,以X表示选中的学生的数学成绩高于100分的人数,求随机变量X的分布列及数学期望.
(参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}n\stackrel{-2}{x}}$,$\stackrel{∧}{a}$=$\overline{y}$b$\overline{x}$,)参考数据:902+852+742+682+632=29394
90×130+85×125+74×110+68×95+63×90=42595.