题目内容

4.设θ为钝角,若sin(θ+$\frac{π}{3}$)=-$\frac{3}{5}$,则cosθ的值为$\frac{-4-3\sqrt{3}}{10}$.

分析 构造思想,cosθ=cos(θ+$\frac{π}{3}-\frac{π}{3}$),θ为钝角,sin(θ+$\frac{π}{3}$)=-$\frac{3}{5}$<0,可得θ+$\frac{π}{3}$在第三象限.可得cos(θ+$\frac{π}{3}$),即可求解.

解答 解:由题意,∵θ为钝角,sin(θ+$\frac{π}{3}$)=-$\frac{3}{5}$<0,
∴θ+$\frac{π}{3}$在第三象限.
那么:cos(θ+$\frac{π}{3}$)=$-\frac{4}{5}$,
故得cosθ=cos(θ+$\frac{π}{3}-\frac{π}{3}$)=cos(θ+$\frac{π}{3}$)cos$\frac{π}{3}$)+sin(θ+$\frac{π}{3}$)sin$\frac{π}{3}$
=$\frac{1}{2}×(-\frac{4}{5})$+$\frac{\sqrt{3}}{2}×(-\frac{3}{4})$=$\frac{{-4-3\sqrt{3}}}{10}$.
故答案为:$\frac{-4-3\sqrt{3}}{10}$

点评 本题考查的知识点是两角和与差的余弦公式的构造思想,难度不大,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网