题目内容

10.下列有关命题的说法错误的是(  )
A.函数f(x)=sinxcosx的最小正周期为π
B.函数$f(x)=lnx+\frac{1}{2}x-2$在区间(2,3)内有零点
C.已知函数$f(x)={log_a}({x^2}-2x+2)$,若$f(\frac{1}{2})>0$,则0<a<1
D.在某项测量中,测量结果ξ服从正态分布N(2,σ2)(σ>0).若ξ在(-∞,1)内取值的概率为0.1,则ξ在(2,3)内取值的概率为0.4

分析 A.根据三角函数的周期公式进行判断.
B.根据函数零点的判断条件进行判断.
C,根据对数的性质进行判断.
D.根据正态分布的性质进行判断.

解答 解:A.f(x)=sinxcosx=$\frac{1}{2}$sinx2x,则函数的周期是π,故A正确,
B.函数在(0,+∞)上为增函数,则f(2)=ln2+1-2=ln2-1=ln$\frac{2}{e}$<0,
f(3)=ln3+$\frac{3}{2}$-2=ln3-$\frac{1}{2}$=ln3-ln$\sqrt{e}$=ln$\frac{3}{\sqrt{e}}$>0,即函数$f(x)=lnx+\frac{1}{2}x-2$在区间(2,3)内有零点,故B正确,
C.∵f($\frac{1}{2}$)=loga($\frac{1}{4}-2×\frac{1}{2}+2$)=loga$\frac{5}{4}$,若$f(\frac{1}{2})>0$,则a>1,故C错误,
D.ξ服从正态分布N(2,σ2)(σ>0).若ξ在(-∞,1)内取值的概率为0.1,则ξ在(3,+∞)内取值的概率为0.1,则ξ在(1,3)内取值的概率为1-0.1-0.1=0.8,即ξ在(2,3)内取值的概率为0.4,故D正确
故选:C.

点评 本题主要考查命题的真假判断,涉及的知识点较多,综合性较强,但难度不大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网