题目内容
计算下列各式的值:
(1)2
•
•
(2)(
-
)0+(
)-2+125
(3)
•
(a>0,b>0)
(4)lg25+lg40
(5)lg5-lg50
(6)log34+log38-log3
(7)log2(log232-log2
+log26)
(8)
log264+
log864+log381
(9)2log525+3log264-8lg1-log88
(10)loga
+loga
+loga
.
(1)2
| 2 |
| 4 | 2 |
| 8 | 2 |
(2)(
| 3 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
(3)
| 4 | ab2 |
| 3 | a2b |
(4)lg25+lg40
(5)lg5-lg50
(6)log34+log38-log3
| 32 |
| 9 |
(7)log2(log232-log2
| 3 |
| 4 |
(8)
| 1 |
| 6 |
| 1 |
| 2 |
(9)2log525+3log264-8lg1-log88
(10)loga
| n | a |
| 1 |
| an |
| 1 | |||
|
考点:对数的运算性质,根式与分数指数幂的互化及其化简运算,有理数指数幂的运算性质,有理数指数幂的化简求值
专题:函数的性质及应用
分析:利用有理数指数幂的运算性质和运算法则,和对数的运算性质和运算法则,代入化简可得答案.
解答:
解:(1)2
•
•
=2
•2
•2
=2
+
+
=2
;
(2)(
-
)0+(
)-2+125
=1+4+25=30;
(3)
•
=a
•b
•a
•b
=a
•b
(a>0,b>0)
(4)lg25+lg40=lg(25×40)=lg1000=3,
(5)lg5-lg50=lg(
)=lg(
)=-1,
(6)log34+log38-log3
=log3(4×8÷
)=log39=2;
(7)log2(log232-log2
+log26)=log2[log2(32÷
×6]=log2(log2256)=log28=3;
(8)
log264+
log864+log381=
×6+
×2+4=1+1+4=6;
(9)2log525+3log264-8lg1-log88=2×2+3×6-8×0-1=4+18-1=21;
(10)loga
+loga
+loga
=
-n-
=-n.
| 2 |
| 4 | 2 |
| 8 | 2 |
| 3 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 3 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 15 |
| 8 |
(2)(
| 3 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
(3)
| 4 | ab2 |
| 3 | a2b |
| 1 |
| 4 |
| 2 |
| 4 |
| 2 |
| 3 |
| 1 |
| 3 |
| 11 |
| 12 |
| 5 |
| 6 |
(4)lg25+lg40=lg(25×40)=lg1000=3,
(5)lg5-lg50=lg(
| 5 |
| 50 |
| 1 |
| 10 |
(6)log34+log38-log3
| 32 |
| 9 |
| 32 |
| 9 |
(7)log2(log232-log2
| 3 |
| 4 |
| 3 |
| 4 |
(8)
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 2 |
(9)2log525+3log264-8lg1-log88=2×2+3×6-8×0-1=4+18-1=21;
(10)loga
| n | a |
| 1 |
| an |
| 1 | |||
|
| 1 |
| n |
| 1 |
| n |
点评:本题考查有理数指数幂和对数的运算性质和运算法则的应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目