题目内容

已知函数y=f(x)的图象上的每一点的纵坐标扩大到原来的4倍,横坐标扩大到原来的2倍,然后把所得的图象沿x轴向左平移
π
2
,这样得到的曲线和y=2sinx的图象相同,则已知函数y=f(x)的解析式为
 
考点:函数y=Asin(ωx+φ)的图象变换
专题:计算题,三角函数的图像与性质
分析:利用逆向思维寻求应有的结论,注意结合函数y=Asin(ωx+φ)的图象变换规律,可得结论.
解答: 解:对函数y=2sinx的图象作相反的变换,利用逆向思维寻求应有的结论.
把y=2sinx的图象沿x轴向右平移
π
2
个单位,得到解析式y=2sin(x-
π
2
)的图象,
再使它的图象上各点的纵坐标不变,横坐标缩小到原来的2倍,
就得到解析式f(x)=2sin(
1
2
x-
π
4
)的图象,
图象上的每一点的纵坐标缩小到原来的4倍,得到函数 f(x)=
1
2
sin(
1
2
x-
π
4
),
故函数y=f(x)的解析式是 f(x)=
1
2
sin(
1
2
x-
π
4
),
故答案为:y=
1
2
sin(
1
2
x-
π
4
)
点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,注意逆向思维的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网