题目内容

下列命题中正确的是(  )
A、当x>0且x≠1时,lgx+
1
lgx
≥2
B、当x>0,
x
+
1
x
≥2
C、当0<θ<
π
2
,sinθ+
2
sinθ
的最小值为2
2
D、当0<x≤2时,x-
1
x
无最大值
考点:函数的值域
专题:函数的性质及应用,不等式的解法及应用
分析:根据基本不等式a+b≥2
ab
的应用条件以及“=”成立的条件,判定选项中正确的命题是哪一个即可.
解答: 解:A中,当x=
1
10
>0时,lg
1
10
+
1
lg
1
10
=-2,命题不成立,A是错误的;
B中,根据基本不等式知,
x
+
1
x
≥2,当且仅当x=1时取“=”,∴B正确;
C中,当0<θ<
π
2
时,0<sinθ<1,∴sinθ+
2
sinθ
取不到最小值2
2
,∴C错误;
D中,当0<x≤2时,x-
1
x
是增函数,有最大值2-
1
2
,∴D错误;
故选:B.
点评:本题考查了基本不等式a+b≥2
ab
的应用问题,解题时应注意“=”成立的条件是什么,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网