题目内容

16.已知函数f(x)=alog2x-blog3x+2,若f($\frac{1}{2015}$)=4,则f(2015)=0.

分析 利用对数的运算性质,可得f($\frac{1}{2015}$)+f(2015)=4,即可求出f(2015)的值.

解答 解:由函数f(x)=alog2x-blog3x+2,
得f($\frac{1}{x}$)=-alog2x+blog3x+2
因此f(x)+f($\frac{1}{x}$)=4,
再令x=2015,得f($\frac{1}{2015}$)+f(2015)=4
所以f(2015)=4-f($\frac{1}{2015}$)=0,
故答案为:0.

点评 本题考查了对数的运算性质,和函数的简单性质,属于基础题.利用互为倒数的两个自变量的函数值之间的关系,是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网