题目内容
已知圆M:(x+
)2+y2=36,定点N(
,0),点P为圆M上的动点,点Q在NP上,点G在线段MP上,且满足
=2
,
•
=0,则点G的轨迹方程为( )
| 5 |
| 5 |
| NP |
| NQ |
| GQ |
| NP |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
考点:轨迹方程
专题:计算题,圆锥曲线的定义、性质与方程
分析:由
=2
,
•
=0,知Q为PN的中点且GQ⊥PN,可得|GN|+|GM|=|MP|=6,故G点的轨迹是以M、N为焦点的椭圆,从而可求方程.
| NP |
| NQ |
| GQ |
| NP |
解答:
解:由
=2
,
•
=0,知Q为PN的中点且GQ⊥PN,
∴GQ为PN的中垂线,∴|PG|=|GN|
∴|GN|+|GM|=|MP|=6,
故G点的轨迹是以M、N为焦点的椭圆,其长半轴长a=3,半焦距c=
,
∴短半轴长b=2,
∴点G的轨迹方程是
+
=1.
故选:A.
| NP |
| NQ |
| GQ |
| NP |
∴GQ为PN的中垂线,∴|PG|=|GN|
∴|GN|+|GM|=|MP|=6,
故G点的轨迹是以M、N为焦点的椭圆,其长半轴长a=3,半焦距c=
| 5 |
∴短半轴长b=2,
∴点G的轨迹方程是
| x2 |
| 9 |
| y2 |
| 4 |
故选:A.
点评:本题主要考查椭圆的定义,解题的关键是将问题等价转化为符合椭圆的定义.
练习册系列答案
相关题目
定义在R上的函数f(x)满足(x+2)•f′(x)<0(其中f′(x)是函数f(x)的导数),又a=f(log23),b=f(1),c=f(ln3),则( )
| A、a<c<b |
| B、b<c<a |
| C、c<a<b |
| D、c<b<a |
直线y=x-4与抛物线y2=2x所围成的图形面积是( )
| A、15 | B、16 | C、17 | D、18 |
已知函数f(x)=
sinωx+cosωx(ω>0)的图象与直线y=-2的两个相邻公共点之间的距离等于π,则f(x)的单调递减区间是( )
| 3 |
A、[kπ+
| ||||
B、[kπ-
| ||||
C、[2kπ+
| ||||
D、[2kπ-
|
集合P中的元素都是整数,并且满足条件:
①P中有正数,也有负数;
②P中有奇数,也有偶数;
③-1∉P;
④若x,y∈P,则x+y∈P.
下面判断正确的是( )
①P中有正数,也有负数;
②P中有奇数,也有偶数;
③-1∉P;
④若x,y∈P,则x+y∈P.
下面判断正确的是( )
| A、0∉P,2∈P |
| B、0∈P,2∈P |
| C、0∈P,2∉P |
| D、0∉P,2∉P |
已知a+2b=2(a,b>0),则ab的最大值为( )
A、
| ||
| B、2 | ||
| C、3 | ||
D、
|
如图是函数f(x)=x3+ax2+bx+c的大致图象,则|x1-x2|=( )

A、
| ||||
B、
| ||||
C、
| ||||
D、
|
已知p:(x-1)(x-2)≤0,q:log2(x+1)≤2,则p是q的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充分必要条件 |
| D、既不充分也不必要条件 |