题目内容

设△ABC的内角A,B,C的对边分别为a,b,c,已知c2-a2=b(b-a),则角C的大小为(  )
A、
π
3
B、
π
6
C、
π
2
D、
3
考点:余弦定理
专题:三角函数的求值
分析:利用余弦定理表示出cosC,将已知等式变形代入求出cosC的值,即可确定出C的度数.
解答: 解:∵c2-a2=b(b-a),即a2+b2-c2=ab,
∴cosC=
a2+b2-c2
2ab
=
1
2

∵C为三角形内角,
∴C=
π
3

故选:A.
点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网