ÌâÄ¿ÄÚÈÝ
4£®£¨1£©ÇóÍÖÔ²EµÄ±ê×¼·½³Ì£»
£¨2£©ÒÑÖªÖ±Ïßl¾¹ý£¨-1£¬$\frac{1}{2}$£©ÇÒбÂÊΪ$\frac{1}{2}$ÓëÍÖÔ²½»ÓÚA£¬BÁ½µã£¬ÇóÏÒ³¤|AB|µÄÖµ£®
·ÖÎö £¨¢ñ£©ÓÉ|OM|+$\frac{1}{2}$|PF1|=2£¬ÓÖ|OM|=$\frac{1}{2}$|PF2|£¬$\frac{1}{2}$|PF1|+$\frac{1}{2}$|PF2|=2£¬¿ÉµÃa£®ÓÖe=$\frac{\sqrt{3}}{2}$=$\frac{c}{a}$£¬a2=b2+c2£®½â³ö¼´¿ÉµÃ³ö£®
£¨¢ò£©·¨Ò»£ºÉèÖ±Ïßl£ºy-$\frac{1}{2}$=$\frac{1}{2}$£¨x+1£©£¬ÁªÁ¢Ö±ÏßÓëÍÖÔ²µÃ£ºx2+2x=0£¬½â³ö½»µã×ø±êÀûÓÃÁ½µãÖ®¼äµÄ¾àÀ빫ʽ¼´¿ÉµÃ³ö£®
·¨¶þ£ºÁªÁ¢·½³ÌµÃx2+2x=0£¬ÀûÓÃ|AB|=$\sqrt{£¨1+\frac{1}{4}£©[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨¢ñ£©ÓÉ|OM|+$\frac{1}{2}$|PF1|=2£¬ÓÖ|OM|=$\frac{1}{2}$|PF2|£¬¡à$\frac{1}{2}$|PF1|+$\frac{1}{2}$|PF2|=2£¬
¡àa=2£®
ÀëÐÄÂÊe=$\frac{\sqrt{3}}{2}$=$\frac{c}{a}$£¬a2=b2+c2£®
½âµÃb=1£¬c=$\sqrt{3}$£®
¹ÊËùÇóµÄÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}$=1£®
£¨¢ò£©·¨Ò»£ºÉèÖ±Ïßl£ºy-$\frac{1}{2}$=$\frac{1}{2}$£¨x+1£©£¬
ÁªÁ¢Ö±ÏßÓëÍÖÔ²µÃ£ºx2+2x=0£¬
ËùÒÔ£¬Ö±ÏßÓëÍÖÔ²ÏཻÁ½µã×ø±êΪ£¨0£¬1£©£¬£¨-2£¬0£©£®
¡à|AB|=$\sqrt{{1}^{2}+£¨-2£©^{2}}$=$\sqrt{5}$£®
·¨¶þ£ºÁªÁ¢·½³Ì$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=\frac{1}{2}x+1}\end{array}\right.$£¬µÃx2+2x=0£¬
¡àx1+x2=-2£¬x1•x2=0£¬
¡à|AB|=$\sqrt{£¨1+\frac{1}{4}£©[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{5}$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÏÒ³¤ÎÊÌâ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢Á½µãÖ®¼äµÄ¾àÀ빫ʽ¡¢Èý½ÇÐÎÖÐλÏß¶¨Àí£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | 3 | B£® | -12 | C£® | -3 | D£® | 12 |
| A£® | £¨-¡Þ£¬1]¡È[3£¬+¡Þ£© | B£® | £¨-¡Þ£¬-1£© | C£® | £¨3£¬+¡Þ£© | D£® | £¨-¡Þ£¬-1] |
| A£® | k=3 | B£® | k=-3 | C£® | k=$\frac{1}{3}$ | D£® | k=-$\frac{1}{3}$ |