ÌâÄ¿ÄÚÈÝ
ÒÑÖªF1ÊÇÍÖÔ²C1£º
+
=1£¨a£¾b£¾0£©ÓëÅ×ÎïÏßC2£ºx2=4y¹²Í¬µÄ½¹µã£¬MÊÇC1ÓëC2ÔÚµÚ¶þÏóÏ޵Ľ»µã£¬ÇÒ|MF1|=
£®
£¨1£©ÊÔÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©ÒÑÖªµãPÊÇÍÖÔ²C1Éϵ͝µã£¬GHÊÇÔ²x2+£¨y+1£©2=1µÄÖ±¾¶£¬ÊÔÇó
•
µÄ×î´óÖµ£»
£¨3£©ÓëÔ²x2+£¨y+1£©2=1ÏàÇеÄÖ±Ïßl£ºy=k£¨x+t£©£¨t¡Ù0£©½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬ÈôÍÖÔ²ÉϵĵãPÂú×ã
+
=¦Ë
£¬ÇóʵÊý¦ËµÄȡֵ·¶Î§£®
| y2 |
| a2 |
| x2 |
| b2 |
| 5 |
| 3 |
£¨1£©ÊÔÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©ÒÑÖªµãPÊÇÍÖÔ²C1Éϵ͝µã£¬GHÊÇÔ²x2+£¨y+1£©2=1µÄÖ±¾¶£¬ÊÔÇó
| PG |
| PH |
£¨3£©ÓëÔ²x2+£¨y+1£©2=1ÏàÇеÄÖ±Ïßl£ºy=k£¨x+t£©£¨t¡Ù0£©½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬ÈôÍÖÔ²ÉϵĵãPÂú×ã
| OA |
| OB |
| OP |
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ,ÍÖÔ²µÄ±ê×¼·½³Ì
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÀûÓÃÅ×ÎïÏߵķ½³ÌºÍ¶¨Òå¼´¿ÉÇó³öµãMµÄ×ø±ê£¬ÔÙÀûÓÃÍÖÔ²µÄ¶¨Òå¼´¿ÉÇó³ö£»
£¨2£©¸ù¾ÝÖ±ÏßÓëÔ²ÏàÇÐÔòÔ²Ðĵ½Ö±Ïß¾àÀëµÈÓÚ°ë¾¶£¬¿ÉµÃk=
£¬ÁªÁ¢Ö±ÏßÓëÍÖÔ²·½³Ì£¬½áºÏÍÖÔ²ÉÏÒ»µãPÂú×ã
•
=¦Ë
=(x1+x2£¬y1+y2)£¬¿ÉµÃµ½¦Ë2µÄ±í´ïʽ£¬½ø¶øÇó³öʵÊý¦ËµÄȡֵ·¶Î§£®
£¨2£©¸ù¾ÝÖ±ÏßÓëÔ²ÏàÇÐÔòÔ²Ðĵ½Ö±Ïß¾àÀëµÈÓÚ°ë¾¶£¬¿ÉµÃk=
| 2t |
| 1-t2 |
| OA |
| OB |
| OP |
½â´ð£º
½â£º£¨1£©ÓÉÒÑÖªF1£¨0£¬1£©£¬
¡àa2-b2=1£¬¢Ù
ÉèM£¨x0£¬y0£©£¬£¨x0£¼0£©£¬
Ôò|MF1|=y0+1=
£¬½âµÃy0=
£¬x02=4y0=
£¬
¡à
+
=1£®¢Ú
ÓÉ¢Ù¢ÚµÃa2=4£¬b2=3£®
¹ÊÍÖÔ²µÄ·½³ÌΪ
+
=1£®
£¨2£©ÓÉÌâÒ⣬Բ¹ýԵ㣬ÉèG£¨x1£¬y1£©£¬H£¨x2£¬y2£©£¬
¡ßGHÊÇÔ²µÄÖ±¾¶£¬
¡àx1x2+y1y2=0£®
ÉèP£¨x3£¬y3£©£¬Ôò
=(x1-x3£¬y1-y3)£¬
=(x2-x3£¬y2-y3)£¬
¡à
•
=x1x2+y1y2-x3(x1+x2)-y3(y1+y2)+x32+y32£»
ÓÖGHµÄÖÐÐÄÊÇ£¨0£¬-1£©£¬
¡àx1+x2=0£¬y1+y2=-2£¬¶ø
+
=1£¬
¡àx32=3-
y32£¬
¡à
•
=
y32+2y3+3=
(y3+4)2-1£¬
ÓÖ¡ß-2¡Üy3¡Ü2£¬
¡àµ±y3=2ʱ£¬
•
×î´ó£¬²¢ÇÒ×î´óֵΪ8£®
£¨3£©¡ßÖ±Ïßl£ºy=k£¨x+t£©£¬£¨t¡Ù0£©ÓëÔ²x2+£¨y+1£©2=1ÏàÇУ¬
¡à
=1⇒k=
£¬£¨t¡Ù0£©£®¢Û
½«Ö±Ïßy=k£¨x+t£©´úÈëÍÖÔ²·½³Ì£¬ÕûÀíµÃ
£¨4+3k2£©x2+6k2tx+3k2t2-12=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ôòx1+x2=-
£¬y1+y2=k£¨x1+t£©+k£¨x2+t£©=k£¨x1+x2£©+2kt=
£¬
¡ß
•
=¦Ë
=(x1+x2£¬y1+y2)£¬
¡àP£¨-
£¬
£©£¬
ÓÖPÔÚÍÖÔ²
+
=1ÉÏ£¬
¡à
+
=1£¬½âµÃ¦Ë2=
£¬
½«¢Û´úÈëÕûÀíµÃ£º¦Ë2=
£¨t¡Ù0£©
¡à0£¼¦Ë2£¼4£¬
¡à¦ËµÄȡֵ·¶Î§ÊÇ£¨-2£¬0£©¡È£¨0£¬2£©£®
¡àa2-b2=1£¬¢Ù
ÉèM£¨x0£¬y0£©£¬£¨x0£¼0£©£¬
Ôò|MF1|=y0+1=
| 5 |
| 3 |
| 2 |
| 3 |
| 8 |
| 3 |
¡à
| 4 |
| 9a2 |
| 8 |
| 3b2 |
ÓÉ¢Ù¢ÚµÃa2=4£¬b2=3£®
¹ÊÍÖÔ²µÄ·½³ÌΪ
| x2 |
| 3 |
| y2 |
| 4 |
£¨2£©ÓÉÌâÒ⣬Բ¹ýԵ㣬ÉèG£¨x1£¬y1£©£¬H£¨x2£¬y2£©£¬
¡ßGHÊÇÔ²µÄÖ±¾¶£¬
¡àx1x2+y1y2=0£®
ÉèP£¨x3£¬y3£©£¬Ôò
| PG |
| PH |
¡à
| PG |
| PH |
ÓÖGHµÄÖÐÐÄÊÇ£¨0£¬-1£©£¬
¡àx1+x2=0£¬y1+y2=-2£¬¶ø
| x32 |
| 3 |
| y32 |
| 4 |
¡àx32=3-
| 3 |
| 4 |
¡à
| PG |
| PH |
| 1 |
| 4 |
| 1 |
| 4 |
ÓÖ¡ß-2¡Üy3¡Ü2£¬
¡àµ±y3=2ʱ£¬
| PG |
| PH |
£¨3£©¡ßÖ±Ïßl£ºy=k£¨x+t£©£¬£¨t¡Ù0£©ÓëÔ²x2+£¨y+1£©2=1ÏàÇУ¬
¡à
| |kt+1| | ||
|
| 2t |
| 1-t2 |
½«Ö±Ïßy=k£¨x+t£©´úÈëÍÖÔ²·½³Ì£¬ÕûÀíµÃ
£¨4+3k2£©x2+6k2tx+3k2t2-12=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ôòx1+x2=-
| 6k2t |
| 4+3k2 |
| 8kt |
| 4+3k2 |
¡ß
| OA |
| OB |
| OP |
¡àP£¨-
| 6k2t |
| (4+3k2)¦Ë |
| 8kt |
| (4+3k2)¦Ë |
ÓÖPÔÚÍÖÔ²
| x2 |
| 3 |
| y2 |
| 4 |
¡à
| 12k4t2 |
| (4+3k2)2¦Ë2 |
| 16k2t2 |
| (4+3k2)2¦Ë2 |
| 4k2t2 |
| 4+3k2 |
½«¢Û´úÈëÕûÀíµÃ£º¦Ë2=
| 4 | ||||
(
|
¡à0£¼¦Ë2£¼4£¬
¡à¦ËµÄȡֵ·¶Î§ÊÇ£¨-2£¬0£©¡È£¨0£¬2£©£®
µãÆÀ£ºÊìÁ·ÕÆÎÕÔ²×¶ÇúÏߵ͍ÒåºÍÐÔÖÊ¡¢ÏòÁ¿ÏàµÈ¡¢Ö±ÏßÓëÔ²×¶ÇúÏßµÄÏཻÎÊÌâ¼°¸ùÓëϵÊýµÄ¹ØÏµÊǽâÌâµÄ¹Ø¼ü£®±¾ÌâÐèÒª½ÏÇ¿µÄ¼ÆËãÄÜÁ¦£¬×¢Òâ·ÖÀàÌÖÂÛµÄ˼Ïë·½·¨Ó¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿