题目内容
14.已知等比数列{an}中,a1=$\frac{1}{2}$,S3=$\frac{3}{2}$,则公比q的值为1或-2.分析 设出公比q,利用等比数列的通项公式构造关于q的方程求解.
解答 解:∵等比数列{an}中,a1=$\frac{1}{2}$,S3=$\frac{3}{2}$,设公比为q,
∴$\frac{1}{2}+\frac{1}{2}q+\frac{1}{2}{q}^{2}=\frac{3}{2}$,
整理,得q2+q-2=0,
解得q=1或q=-2.
∴公比q的值1或-2.
故答案为:1或-2.
点评 本题考查等比数列的公比的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.
练习册系列答案
相关题目
2.已知O为直角坐标原点,点A(2,3),点P为平面区域$\left\{\begin{array}{l}{x+1≥0}\\{x+y≤2}\\{y≥m(x-2)}\end{array}\right.$(m>0)内的一动点,若$\overrightarrow{OA}$•$\overrightarrow{OP}$的最小值为-6,则m=( )
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{4}{9}$ | D. | $\frac{1}{3}$ |