题目内容
16.已知等比数列{an}中:a1=1,a7a8=27a${\;}_{9}^{2}$..(1)求{an}的通项公式;
(2)若bn=-$\frac{1}{lo{g}_{3}{a}_{2n+1}•lo{g}_{3}{a}_{2n+3}}$,求数列{bn}的前n项和Sn.
分析 (1)化简a7a8=27a${\;}_{9}^{2}$可得a7=27a10,从而求得$q=\frac{1}{3}$,从而写出{an}的通项公式;
(2)利用对数运算化简可得log3a2n+1=-2n,log3a2n+3=-2n-2,从而利用裂项求和法求和.
解答 解:(1)∵a7a8=27a${\;}_{9}^{2}$,∴a7a8=27a8a10,
∴a7=27a10,
设{an}的公比为q,则${q^3}=\frac{{{a_{10}}}}{a_7}=\frac{1}{27}$,
故$q=\frac{1}{3}$,
所以{an}的通项公式为an=($\frac{1}{3}$)n-1;
(2)log3a2n+1=log3(($\frac{1}{3}$)2n)=-2n,
log3a2n+3=log3(($\frac{1}{3}$)2n+2)=-2n-2,
故bn=-$\frac{1}{lo{g}_{3}{a}_{2n+1}•lo{g}_{3}{a}_{2n+3}}$=-$\frac{1}{4n(n+1)}$=-$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),
故${S_n}=-\frac{1}{4}[{(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+…+(\frac{1}{n}-\frac{1}{n+1})}]=-\frac{1}{4}(1-\frac{1}{n+1})=-\frac{n}{4n+4}$.
点评 本题考查了数列的性质的判断与应用,同时考查了对数运算及裂项求和法的应用.
练习册系列答案
相关题目
4.已知F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右两个焦点,若在双曲线C上存在点P使∠F1PF2=90°,且满足2∠PF1F2=∠PF2F1,那么双曲线C的离心率为( )
| A. | $\sqrt{3}$+1 | B. | 2 | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{5}}{2}$ |
8.已知函数f(x)=(x2+ax+b)ex,当b<1时,函数f(x)在(-∞,-2),(1,+∞)上均为增函数,则$\frac{a+b}{a-2}$的取值范围是( )
| A. | (-2,$\frac{2}{3}$] | B. | [-$\frac{1}{3}$,2) | C. | (-∞,$\frac{2}{3}$] | D. | [-$\frac{2}{3}$,2] |
5.
某中学为了解某次竞赛成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本进行统计,请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图解决下列问题:
频率分布表:
(1)写出a,b,x,y的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学参加座谈,求所抽取的2名同学来自同一组的概率.
频率分布表:
| 组别 | 分组 | 频数 | 频率 |
| 第1组 | [50,60) | 9 | 0.18 |
| 第2组 | [60,70) | a | ▓ |
| 第3组 | [70,80) | 20 | 0.40 |
| 第4组 | [80,90) | ▓ | 0.08 |
| 第5组 | [90,100] | 2 | b |
| 合计 | ▓ | ▓ |
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学参加座谈,求所抽取的2名同学来自同一组的概率.
6.已知全集U=R,集合A={x|x≤-2或x≥3},B={x|x<-1或x>4},那么集合(∁UA)∩B等于( )
| A. | {x|-2≤x<4} | B. | {x|-2<x<3} | C. | {x|-2<x<-1} | D. | {x|-2<x<-1或3<x<4} |