题目内容
一个几何体的正视图为一个四边形,则这个几何体可能是下列几何体中的( )
①圆锥 ②圆柱 ③三棱锥 ④四棱柱.
①圆锥 ②圆柱 ③三棱锥 ④四棱柱.
| A、①② | B、②③ | C、①④ | D、②④ |
考点:简单空间图形的三视图
专题:常规题型,空间位置关系与距离
分析:由空间几何体想象其三视图即可.
解答:
解:①圆锥的三视图的正视图不可能为四边形;
②圆柱底面圆在下时的正视图为四边形,
③三棱锥的三视图的正视图不可能为四边形;
④四棱柱的正视图可以是四边形.
故选D.
②圆柱底面圆在下时的正视图为四边形,
③三棱锥的三视图的正视图不可能为四边形;
④四棱柱的正视图可以是四边形.
故选D.
点评:本题考查了学生的空间想象力,属于基础题.
练习册系列答案
相关题目
已知向量
,
满足|
|=
,|
|=1,且对任意实数x,不等式|
+x
|≥|
+
|恒成立,设
与
的夹角为θ,则tan2θ=( )
| a |
| b |
| a |
| 3 |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
A、
| ||
B、-
| ||
C、-2
| ||
D、2
|
若复数z=1-i,则(1+z)•
=( )
. |
| z |
| A、3-i | B、3+i |
| C、1+3i | D、3 |
函数y=
x2-lnx的单调递减区间是( )
| 1 |
| 2 |
| A、(1,+∞) |
| B、(0,+∞) |
| C、(0,1) |
| D、(-1,1) |
已知x>0,y>0,2x+y+2xy=8,则2x+y的最小值是( )
| A、3 | ||
| B、4 | ||
C、
| ||
D、
|
函数f(x)=-
x3+x2+3x的单调递增区间为( )
| 1 |
| 3 |
| A、(-3,1) |
| B、(-1,3) |
| C、(-∞,-1)和(3,+∞) |
| D、(-∞,-3)和(1,+∞) |
若ax2+bx+c<0的解集为{x|x<-2或x>4},则对于函数f(x)=ax2+bx+c应有( )
| A、f(5)<f(2)<f(-1) |
| B、f(5)<f(-1)<f(2) |
| C、f(-1)<f(2)<f(5) |
| D、f(2)<f(-1)<f(5) |