题目内容
已知数列{an}的前n项和为Sn,且Sn=
.
(Ⅰ)求an;
(Ⅱ)设bn=
,求数列{bn}的前n项和Tn.
|
(Ⅰ)求an;
(Ⅱ)设bn=
| Sn+1 |
| (Sn+lognSn)(Sn+1+log2Sn+1) |
考点:数列的求和,数列递推式
专题:计算题,等差数列与等比数列
分析:(Ⅰ根据)n≥2时 an=(Sn-Sn-1)得出Sn=2Sn-1,S1=2为等比数列,求出Sn=2n进一步求出an;
(Ⅱ)先由(Ⅰ)求出bn═
-
写出Tn=
-
+
-
+…+
-
得出值.
(Ⅱ)先由(Ⅰ)求出bn═
| 1 |
| 2n+n |
| 1 |
| 2n+1+n+1 |
| 1 |
| 2+1 |
| 1 |
| 22+2 |
| 1 |
| 22+2 |
| 1 |
| 23+3 |
| 1 |
| 2n+n |
| 1 |
| 2n+1+n+1 |
解答:
解:(Ⅰ)n≥2时,Sn=2an=2(Sn-Sn-1),
∴Sn=2Sn-1,S1=2
所以Sn=2n
an=
(Ⅱ)bn=
=
-
Tn=b1+b2+…+bn
=
-
+
-
+…+
-
=
-
∴Sn=2Sn-1,S1=2
所以Sn=2n
an=
|
(Ⅱ)bn=
| 2n+1 |
| (2n+n)(2n+1+n+1) |
=
| 1 |
| 2n+n |
| 1 |
| 2n+1+n+1 |
Tn=b1+b2+…+bn
=
| 1 |
| 2+1 |
| 1 |
| 22+2 |
| 1 |
| 22+2 |
| 1 |
| 23+3 |
| 1 |
| 2n+n |
| 1 |
| 2n+1+n+1 |
=
| 1 |
| 3 |
| 1 |
| 2n+1+n+1 |
点评:本题考查数列通项公式的求法和数列前n项和的求法,求和关键是求出通项确定方法,属于一道中档题.
练习册系列答案
相关题目
已知i是虚数单位,则复数z=i(2-i)所对应的点落在( )
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |