题目内容

已知tanθ=2,求f(x)=
sin(θ-
2
)+2sin(π-θ)+4sin(
2
-θ)
cos(π+θ)+2cos(
π
2
+θ)+4cos(θ-π)
的值.
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:根据tanθ=2,把要求的式子利用同角三角函数的基本关系化为
2sinθ-3cosθ
-2sinθ-5cosθ
,即
2tanθ-3
-2tanθ-5
,计算求得结果
解答: 解:∵已知tanθ=2,
∴f(x)=
sin(θ-
2
)+2sin(π-θ)+4sin(
2
-θ)
cos(π+θ)+2cos(
π
2
+θ)+4cos(θ-π)
=
-sin(
2
-θ)+2sinθ+4sin(
2
-θ)
-cosθ-2sinθ+4cos(π-θ)
=
cosθ+2sinθ-4cosθ
-cosθ-2sinθ-4cosθ
=
2sinθ-3cosθ
-2sinθ-5cosθ
=
2tanθ-3
-2tanθ-5
=-
1
9
点评:本题主要考查同角三角函数的基本关系的应用,诱导公式的应用,注意三角函数在各个象限中的符号,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网