题目内容

设函数f(x)=ax2+bx+c(a、b、c∈R,且a>0),若a=1,又知x1,x2是方程f(x)=0的两个根,且x1,x2∈(m,m+1),其中m∈R,求f(m)f(m+1)的最大值.
考点:二次函数的性质
专题:函数的性质及应用
分析:设f(x)=(x-x1)(x-x2),x1,x2∈(m,m+1),得到f(m)•f(m+1)=(m-x1)(m-x2)(m+1-x1)(m+1-x2)=[(x1-m)(m+1-x1)][(x2-m)(m+1-x2],再利用基本不等式求最值.
解答: 解:不妨设f(x)=(x-x1)(x-x2),x1,x2∈(m,m+1),
由m-x1<0,m-x2<0,m+1-x1>0,m+1-x2>0,
∴f(m)•f(m+1)=(m-x1)(m-x2)(m+1-x1)(m+1-x2
=[(x1-m)(m+1-x1)][(x2-m)(m+1-x2]
(
x1-m+m+1-x1
2
)2
(
x2-m+m+1x2
2
)2

=
1
16

当且仅当x1=x2=m+
1
2
时取等号,
∴f(m)f(m+1)的最大值为
1
16
点评:本题属于二次函数的性质问题,在求解过程中注意基本不等式的应用问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网