题目内容
设等比数列{an}的前n项和为Sn,已知an+1=2Sn+2(n∈N*).
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列,设数列{
}的前n项和为Tn,证明Tn<
.
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列,设数列{
| 1 |
| dn |
| 15 |
| 16 |
考点:数列的求和,等比数列的性质,数列递推式
专题:等差数列与等比数列
分析:(1)由已知得an+1-an=2an,a2=3a1,a2=2a1+2,由此能求出an=2•3n-1.
(2)由已知得dn=
,由此利用错位相减法能证明Tn=
-
<
.
(2)由已知得dn=
| 4×3n-1 |
| n+1 |
| 15 |
| 16 |
| 2n+n |
| 16×3n-1 |
| 15 |
| 16 |
解答:
(1)解:∵an+1=2Sn+2(n∈N*),∴an=2Sn-1+2(n∈N*,n≥2),
两式相减,得an+1-an=2an,
即an+1=3an,n≥2,
∵等比数列{an},∴a2=3a1,
又a2=2a1+2,∴a1=2,
∴an=2•3n-1.
(2)证明:由(1)得an+1=2•3n,an=2•3n-1,
∵an+1=an+(n+1)dn,
∴dn=
,
∴Tn=
+
+
+…+
,①
Tn=
+
+
+…+
,②
①-②,得
Tn=
+
+
+…+
-
=
+
×
-
=
-
,
∴Tn=
-
<
.
两式相减,得an+1-an=2an,
即an+1=3an,n≥2,
∵等比数列{an},∴a2=3a1,
又a2=2a1+2,∴a1=2,
∴an=2•3n-1.
(2)证明:由(1)得an+1=2•3n,an=2•3n-1,
∵an+1=an+(n+1)dn,
∴dn=
| 4×3n-1 |
| n+1 |
∴Tn=
| 2 |
| 4×30 |
| 3 |
| 4×3 |
| 4 |
| 4×32 |
| n+1 |
| 4×3n-1 |
| 1 |
| 3 |
| 2 |
| 4×3 |
| 3 |
| 4×32 |
| 4 |
| 4×33 |
| n+1 |
| 4×3n |
①-②,得
| 2 |
| 3 |
| 2 |
| 4×30 |
| 1 |
| 4×31 |
| 1 |
| 4×32 |
| 1 |
| 4×3n-1 |
| n+1 |
| 4×3n |
=
| 1 |
| 2 |
| 1 |
| 4 |
| ||||
1-
|
| n+1 |
| 4×3n |
=
| 5 |
| 8 |
| 2n+5 |
| 8×3n |
∴Tn=
| 15 |
| 16 |
| 2n+n |
| 16×3n-1 |
| 15 |
| 16 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目
已知f(x)=x2+x-2,则f(2)=( )
| A、-1 | B、2 | C、4 | D、10 |