题目内容
14.已知$sin(15°-α)=\frac{1}{3}$,则cos(30°-2α)的值为$\frac{7}{9}$.分析 直接利用二倍角公式化简求解即可.
解答 解:$sin(15°-α)=\frac{1}{3}$,
则cos(30°-2α)=1-2sin2(15°-α)=1-2×$(\frac{1}{3})^{2}$=$\frac{7}{9}$.
故答案为:$\frac{7}{9}$.
点评 本题考查二倍角公式应用,考查计算能力.
练习册系列答案
相关题目
9.数列{an}中,${a_1}=\frac{1}{2},{a_n}=\frac{1}{{1-{a_{n-1}}}}(n≥2,n∈N*)$,则a2015=( )
| A. | 2 | B. | -1 | C. | 1 | D. | $\frac{1}{2}$ |
4.某地随着经济的发展,居民收入逐年增长,如表是该地一建设银行连续五年的储蓄存款(年底余额),如下表:
为了研究计算的方便,工作人员将上表的数据进行了处理,t=x-2010,z=y-5得到如下表:
(Ⅰ)求z关于t的线性回归方程;
(Ⅱ)通过(Ⅰ)中的方程,求出y关于x的回归方程;
(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程$\hat y=\hat bx+\hat a$,其中:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)
| 年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
| 储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
| 时间代号t | 1 | 2 | 3 | 4 | 5 |
| z | 0 | 1 | 2 | 3 | 5 |
(Ⅱ)通过(Ⅰ)中的方程,求出y关于x的回归方程;
(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程$\hat y=\hat bx+\hat a$,其中:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)