题目内容

4.在△ABC中,已知2sinA=3sinC,b-c=$\frac{1}{3}$a,则cosA的值为$\frac{1}{3}$.

分析 在△ABC中,2sinA=3sinC,由正弦定理可得:2a=3c,a=$\frac{3c}{2}$.由b-c=$\frac{1}{3}$a,可得b=$\frac{3c}{2}$=a.再利用余弦定理即可得出.

解答 解:在△ABC中,2sinA=3sinC,由正弦定理可得:2a=3c,∴a=$\frac{3c}{2}$.
∵b-c=$\frac{1}{3}$a,∴b=c+$\frac{1}{3}×\frac{3c}{2}$=$\frac{3c}{2}$.因此a=b.
则cosA=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{c}{2×\frac{3c}{2}}$=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题考查了正弦定理余弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网