题目内容
4.在△ABC中,已知2sinA=3sinC,b-c=$\frac{1}{3}$a,则cosA的值为$\frac{1}{3}$.分析 在△ABC中,2sinA=3sinC,由正弦定理可得:2a=3c,a=$\frac{3c}{2}$.由b-c=$\frac{1}{3}$a,可得b=$\frac{3c}{2}$=a.再利用余弦定理即可得出.
解答 解:在△ABC中,2sinA=3sinC,由正弦定理可得:2a=3c,∴a=$\frac{3c}{2}$.
∵b-c=$\frac{1}{3}$a,∴b=c+$\frac{1}{3}×\frac{3c}{2}$=$\frac{3c}{2}$.因此a=b.
则cosA=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{c}{2×\frac{3c}{2}}$=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.
点评 本题考查了正弦定理余弦定理,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
14.若α的终边在第一、三象限的角平分线上,则$\frac{sinα}{\sqrt{1-si{n}^{2}α}}$+$\frac{\sqrt{1-co{s}^{2}α}}{cosα}$=±2tanα.
15.设(1+2i)x=2+yi,其中x,y是实数,则|x+yi|=( )
| A. | 2 | B. | 4 | C. | $2\sqrt{5}$ | D. | $2\sqrt{3}$ |
12.若双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)实轴的两个端点和抛物线x2=-4by的焦点连成一个等边三角形,则此双曲线的离心率为( )
| A. | $\frac{2\sqrt{3}}{3}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 2$\sqrt{3}$ |
19.已知数列{an}的通项公式是关于n的一次函数,a3=7,a7=19,则a10的值为( )
| A. | 26 | B. | 28 | C. | 30 | D. | 32 |
9.已知复数z=$\frac{1}{1-i}$,则$\overline{z}$•i在复平面内对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
13.
高一(9)班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:则统计表中的a•p=65.
| 组数 | 分组 | 低碳族的人数 | 占本组的频率 |
| 第一组 | [25,30) | 120 | 0.6 |
| 第二组 | [30,35) | 195 | p |
| 第三组 | [35,40) | 100 | 0.5 |
| 第四组 | [40,45) | a | 0.4 |
| 第五组 | [45,50) | 30 | 0.3 |
| 第六组 | [50,55) | 15 | 0.3 |