ÌâÄ¿ÄÚÈÝ
2£®Ä³³õ¼¶ÖÐѧÓÐѧÉú111ÈË£¬ÆäÖÐÒ»Äê¼¶108ÈË£¬¶þ¡¢ÈýÄê¼¶¸÷81ÈË£¬ÏÖÒªÀûÓóéÑù·½·¨È¡10È˲μÓijÏîµ÷²é£¬¿¼ÂÇÑ¡Óüòµ¥Ëæ»ú³éÑù¡¢·Ö²ã³éÑùºÍϵͳ³éÑùÈýÖÖ·½°¸£¬Ê¹Óüòµ¥Ëæ»ú³éÑùºÍ·Ö²ã³éÑùʱ£¬½«Ñ§Éú°´Ò»¡¢¶þ¡¢ÈýÄê¼¶ÒÀ´Îͳһ±àºÅΪ1£¬2£¬¡£¬270£»Ê¹ÓÃϵͳ³éÑùʱ£¬½«Ñ§ÉúÍ³Ò»Ëæ»ú±àºÅ1£¬2£¬¡£¬270£¬²¢½«Õû¸ö±àºÅÒÀ´Î·ÖΪ10¶Î Èç¹û³éµÃºÅÂëÓÐÏÂÁÐËÄÖÖÇé¿ö£º¢Ù7£¬34£¬61£¬88£¬115£¬142£¬169£¬196£¬223£¬250£»
¢Ú5£¬9£¬100£¬107£¬111£¬121£¬180£¬195£¬200£¬265£»
¢Û11£¬38£¬65£¬92£¬119£¬146£¬173£¬200£¬227£¬254£»
¢Ü30£¬57£¬84£¬111£¬138£¬165£¬192£¬219£¬246£¬270£»
¹ØÓÚÉÏÊöÑù±¾µÄÏÂÁнáÂÛÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ¢Ú¡¢¢Û¶¼²»ÄÜΪϵͳ³éÑù | B£® | ¢Ú¡¢¢Ü¶¼²»ÄÜΪ·Ö²ã³éÑù | ||
| C£® | ¢Ù¡¢¢Û¶¼¿ÉÄÜΪ·Ö²ã³éÑù | D£® | ¢Ù¡¢¢Ü¶¼¿ÉÄÜΪϵͳ³éÑù |
·ÖÎö ¸ù¾ÝËù¸øµÄËÄ×éÊý¾ÝµÄÌØµã£¬½áºÏϵͳ³éÑùÖи÷Êý¾ÝµÄ¼ä¸ôÊÇÏàµÈµÄ£¬¼òµ¥Ëæ»ú³éÑùÓë·Ö²ã³éÑùûÓÐÕâÒ»Ã÷ÏÔÌØÕ÷£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º¹Û²ìËù¸øµÄËÄ×éÊý¾Ý£¬
¢Ù£¬¢ÛÁ½×éÊý¾ÝÖеķֶμä¸ôÏàµÈ£¬¿ÉÄÜÊÇϵͳ³éÑù»ò·Ö²ã³éÑù£¬
¢Ú¸Ã×éÊý¾ÝÖи÷Êý¾ÝµÄ¼ä¸ôûÓйæÂÉ£¬Ó¦ÊǼòµ¥Ëæ»ú³éÑù£¬
¢Ü¸Ã×éÊý¾ÝÖзֶμä¸ôûÓйæÂÉ£¬Ó¦¸Ã²»ÊÇϵͳ³éÑùºÍ·Ö²ã³éÑù£®
ÓÉ´Ë£¬·ûºÏÌâÒâµÄÊÇÑ¡ÏîC£®
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²éÁ˼òµ¥Ëæ»ú³éÑùÓëϵͳ³éÑù¡¢·Ö²ã³éÑù·½·¨µÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
13£®¾¹ýµãP£¨0£¬-1£©×÷Ö±Ïßl£¬ÈôÖ±ÏßlÓëÁ¬½ÓA£¨1£¬-2£©£¬B£¨2£¬1£©µÄÏß¶ÎûÓй«¹²µã£¬ÔòÖ±ÏßlµÄбÂÊkÓëÇãб½Ç¦ÁµÄȡֵ·¶Î§·Ö±ðÊÇ£¨¡¡¡¡£©
| A£® | £¨-¡Þ£¬-1£©¡È£¨1£¬+¡Þ£©£¬£¨$\frac{¦Ð}{4}$£¬$\frac{3¦Ð}{4}$£© | B£® | £¨-¡Þ£¬-1£©¡È£¨1£¬+¡Þ£©£¬£¨$\frac{¦Ð}{4}$£¬$\frac{¦Ð}{2}$£©¡È£¨$\frac{¦Ð}{2}$£¬$\frac{3¦Ð}{4}$£© | ||
| C£® | £¨-1£¬1£©£¬[$\frac{¦Ð}{4}$£¬$\frac{3¦Ð}{4}$] | D£® | £¨-1£¬1£©£¬[0£¬$\frac{¦Ð}{4}$]¡È[$\frac{3¦Ð}{4}$£¬0£© |
17£®¶¨ÒåÔÚN*µÄº¯Êýf£¨x£©Âú×ãf£¨1£©=2ÇÒÓÐf£¨n+1£©=$\left\{\begin{array}{l}\frac{1}{2}f£¨n£©£¬nΪżÊý\\ f£¨n£©£¬nÎªÆæÊý\end{array}$£¬Ôòf£¨12£©µÄֵΪ£¨¡¡¡¡£©
| A£® | $\frac{1}{32}$ | B£® | $\frac{1}{16}$ | C£® | $\frac{1}{64}$ | D£® | 1 |
14£®Ãݺ¯Êýy=x3ÔÚ[1£¬2]ÉϵÄ×î´óÖµÓë×îСֵ֮ºÍΪ£¨¡¡¡¡£©
| A£® | 10 | B£® | 9 | C£® | 8 | D£® | 6 |
11£®ÒÑÖª|$\overrightarrow{a}$|=1£¬|$\overrightarrow{b}$|=2£¬£¼$\overrightarrow{a}$£¬$\overrightarrow{b}$£¾=60¡ã£¬Ôò|$\overrightarrow{a}$-$\overrightarrow{b}$|=£¨¡¡¡¡£©
| A£® | 1 | B£® | 2 | C£® | $\sqrt{3}$ | D£® | 4 |
12£®Ëã·¨³ÌÐò¿òͼÈçͼËùʾ£¬Èô$a=\frac{¦Ð}{2}$£¬$b={3^{\frac{1}{3}}}$£¬$c={£¨{\sqrt{e}}£©^{ln3}}$£¬ÔòÊä³öµÄ½á¹ûÊÇ£¨¡¡¡¡£©
| A£® | $\frac{a+b+c}{3}$ | B£® | a | C£® | b | D£® | c |