题目内容

7.若将函数y=2sin2x的图象向左平移$\frac{π}{12}$个单位得到f(x)的图象,则下列哪项是f(x)的对称中心(  )
A.$(\frac{π}{12},0)$B.$(\frac{5π}{12},0)$C.$(-\frac{5π}{12},0)$D.$(\frac{π}{6},0)$

分析 利用函数y=Asin(ωx+φ)的图象变换规律求得f(x)的解析式,再利用正弦函数的图象的对称性得出结论.

解答 解:将函数y=2sin2x的图象向左平移$\frac{π}{12}$个单位得到f(x)=2sin2(x+$\frac{π}{12}$)=2si(2x+$\frac{π}{6}$)的图象,
令2x+$\frac{π}{6}$=kπ,求得x=$\frac{kπ}{2}$-$\frac{π}{12}$,故函数的图象的对称中心为($\frac{kπ}{2}$-$\frac{π}{12}$,0),k∈Z,
故选:B.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网