题目内容
已知等比数列{an}的前n项和为Sn,且满足Sn=3n+k.
(1)求k的值及数列{an}的通项公式;
(2)若数列{bn}满足anbn=n,求数列{bn}的前n项和Tn.
(1)求k的值及数列{an}的通项公式;
(2)若数列{bn}满足anbn=n,求数列{bn}的前n项和Tn.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知条件得a1=3+k,a2=6,a3=18,由18(3+k)=36,解得k=-1.由此能求an=2•3n-1.
(2)由anbn=n,得bn=
=
,由此利用错位相减法能求出数列{bn}的前n项和Tn.
(2)由anbn=n,得bn=
| n |
| an |
| n |
| 2•3n-1 |
解答:
解:(1)∵等比数列{an}的前n项和为Sn,且满足Sn=3n+k.
∴a1=3+k,a2=S2-S1=9-3=6,
a3=S3-S2=27-9=18,
∴18(3+k)=36,解得k=-1.
∴Sn=3n-1,a1=2,q=
=3,
∴an=2•3n-1.
(2)∵anbn=n,∴bn=
=
,
∴Tn=
×
+
•
+
•
+…+
•
,①
Tn=
•
+
•
+
•
+…+
•
,②
①-②,得:
Tn=
(1+
+
+…+
)-
•
=
×
-
•
=
-(
+
)•
,
∴Tn=
-(
+
)•
.
∴a1=3+k,a2=S2-S1=9-3=6,
a3=S3-S2=27-9=18,
∴18(3+k)=36,解得k=-1.
∴Sn=3n-1,a1=2,q=
| 6 |
| 2 |
∴an=2•3n-1.
(2)∵anbn=n,∴bn=
| n |
| an |
| n |
| 2•3n-1 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 30 |
| 2 |
| 2 |
| 1 |
| 3 |
| 3 |
| 2 |
| 1 |
| 32 |
| n |
| 2 |
| 1 |
| 3n-1 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 2 |
| 1 |
| 32 |
| 3 |
| 2 |
| 1 |
| 33 |
| n |
| 2 |
| 1 |
| 3n |
①-②,得:
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n |
| n |
| 2 |
| 1 |
| 3n |
=
| 1 |
| 2 |
1-
| ||
1-
|
| n |
| 2 |
| 1 |
| 3n |
=
| 3 |
| 4 |
| 3 |
| 4 |
| n |
| 2 |
| 1 |
| 3n |
∴Tn=
| 9 |
| 8 |
| 3 |
| 8 |
| n |
| 4 |
| 1 |
| 3n-1 |
点评:本题考查数列的通项公式的求法,考查数列的通项公式的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目