题目内容
已知数列{an}为等差数列,且满足an+1=an2-nan+1,n=1,2,3,…
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:
+
+
+…+
<ln2
(Ⅲ)当0<λ<1时,设bn=λ(an-
),cn=(1-λ)an,数列{
}的前n项和为Tn,求证:Tn>
.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:
| 1 |
| an+1 |
| 1 |
| an+2 |
| 1 |
| an+3 |
| 1 |
| a2n+1 |
(Ⅲ)当0<λ<1时,设bn=λ(an-
| 1 |
| 2 |
| 1 |
| bncn |
| 9n-1 |
| 4n+3 |
考点:数列与不等式的综合,等差数列的性质
专题:综合题,等差数列与等比数列,不等式的解法及应用
分析:(Ⅰ)设an=kn+b,利用条件即可求数列{an}的通项公式;
(Ⅱ)构造函数g(x)=ln(x+1)-
,x∈[0,1],求导,确定单调性,可得
<ln(n+1)=lnn,累加,即可证明结论;
(Ⅲ)确定通项,可得Tn≥16(
-
+
-
+…+
-
)=16(
+
+…+
-
),令tn=
+
+…+
,证明tn≥
,即可得出结论.
(Ⅱ)构造函数g(x)=ln(x+1)-
| x |
| x+1 |
| 1 |
| n+1 |
(Ⅲ)确定通项,可得Tn≥16(
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n+2 |
| 1 |
| 2 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n+2 |
| 2(n+1) |
| 3n+4 |
解答:
(Ⅰ)解:设an=kn+b,k∈R,n∈N*,则kn+k+b=(kn+b)2-n(kn+b)+1,
化简得:(k2-k)n2+(2kb-k-b)n+(b2+1-k-b)=0对n∈N*恒成立,
故有:k2-k=0①且2kb-k-b=0②且b2+1-k-b=0③
所以k=1,b=1;
所以数列{an}的通项公式为an=n+1…4分
(Ⅱ)证明:构造函数g(x)=ln(x+1)-
,x∈[0,1],求导得g′(x)=
≥0,
所以函数g(x)在区间[0,1]上单调递增,
由于0<
≤1,故g(
)>g(0)=0,
即ln(1+
)-
>0,
所以
<ln(n+1)=lnn
累加即得
+
+…+
<ln(2n+2)-ln(n+1)=ln2,
故原不等式成立. …9分
(Ⅲ)证明:∵bn=λ(an-
)=
,cn=(1-λ)an=(1-λ) (n+1),
∴
=
≥16(
-
),
∴Tn≥16(
-
+
-
+…+
-
)=16(
+
+…+
-
).
令tn=
+
+…+
,倒序相加可得
2tn=(
+
)+(
+
)+…+(
+
),
∵(n+2)+(2n+2)=3n+4,
∴(3n+4)(
+
)>4
∴
+
>
,
同理
+
>
,…,
+
>
,
∴2tn≥
,
∴tn≥
∴Tn>16[
-
]=
∵
-
=
>0,
∴Tn>
.
化简得:(k2-k)n2+(2kb-k-b)n+(b2+1-k-b)=0对n∈N*恒成立,
故有:k2-k=0①且2kb-k-b=0②且b2+1-k-b=0③
所以k=1,b=1;
所以数列{an}的通项公式为an=n+1…4分
(Ⅱ)证明:构造函数g(x)=ln(x+1)-
| x |
| x+1 |
| x |
| (x+1)2 |
所以函数g(x)在区间[0,1]上单调递增,
由于0<
| 1 |
| n |
| 1 |
| n |
即ln(1+
| 1 |
| n |
| 1 |
| n+1 |
所以
| 1 |
| n+1 |
累加即得
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n+2 |
故原不等式成立. …9分
(Ⅲ)证明:∵bn=λ(an-
| 1 |
| 2 |
| λ(2n+1) |
| 2 |
∴
| 1 |
| bncn |
| 4 |
| λ(1-λ)(2n+1)(2n+2) |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
∴Tn≥16(
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n+2 |
| 1 |
| 2 |
令tn=
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n+2 |
2tn=(
| 1 |
| n+2 |
| 1 |
| 2n+2 |
| 1 |
| n+3 |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| n+2 |
∵(n+2)+(2n+2)=3n+4,
∴(3n+4)(
| 1 |
| n+2 |
| 1 |
| 2n+2 |
∴
| 1 |
| n+2 |
| 1 |
| 2n+2 |
| 4 |
| 3n+4 |
同理
| 1 |
| n+3 |
| 1 |
| 2n+1 |
| 4 |
| 3n+4 |
| 1 |
| 2n+2 |
| 1 |
| n+2 |
| 4 |
| 3n+4 |
∴2tn≥
| 4(n+1) |
| 3n+4 |
∴tn≥
| 2(n+1) |
| 3n+4 |
∴Tn>16[
| 2(n+1) |
| 3n+4 |
| 1 |
| 2 |
| 8n |
| 3n+4 |
∵
| 8n |
| 3n+4 |
| 9n-1 |
| 4n+3 |
| (5n-4)(n-1) |
| (3n+4)(4n+3) |
∴Tn>
| 9n-1 |
| 4n+3 |
点评:本题考查数列的通项羽求和,考查导数知识的运用,考查不等式的证明,考查学生分析解决问题的能力,难度大.
练习册系列答案
相关题目