题目内容

已知数列{an}为等差数列,且满足an+1=an2-nan+1,n=1,2,3,…
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:
1
an+1
+
1
an+2
+
1
an+3
+…+
1
a2n+1
<ln2
(Ⅲ)当0<λ<1时,设bn=λ(an-
1
2
),cn=(1-λ)an,数列{
1
bncn
}的前n项和为Tn,求证:Tn
9n-1
4n+3
考点:数列与不等式的综合,等差数列的性质
专题:综合题,等差数列与等比数列,不等式的解法及应用
分析:(Ⅰ)设an=kn+b,利用条件即可求数列{an}的通项公式;
(Ⅱ)构造函数g(x)=ln(x+1)-
x
x+1
,x∈[0,1],求导,确定单调性,可得
1
n+1
<ln(n+1)=lnn,累加,即可证明结论;
(Ⅲ)确定通项,可得Tn≥16(
1
3
-
1
4
+
1
5
-
1
6
+…+
1
2n+1
-
1
2n+2
)=16(
1
n+2
+
1
n+3
+…+
1
2n+2
-
1
2
),令tn=
1
n+2
+
1
n+3
+…+
1
2n+2
,证明tn
2(n+1)
3n+4
,即可得出结论.
解答: (Ⅰ)解:设an=kn+b,k∈R,n∈N*,则kn+k+b=(kn+b)2-n(kn+b)+1,
化简得:(k2-k)n2+(2kb-k-b)n+(b2+1-k-b)=0对n∈N*恒成立,
故有:k2-k=0①且2kb-k-b=0②且b2+1-k-b=0③
所以k=1,b=1;
所以数列{an}的通项公式为an=n+1…4分
(Ⅱ)证明:构造函数g(x)=ln(x+1)-
x
x+1
,x∈[0,1],求导得g′(x)=
x
(x+1)2
≥0,
所以函数g(x)在区间[0,1]上单调递增,
由于0<
1
n
≤1,故g(
1
n
)>g(0)=0,
即ln(1+
1
n
)-
1
n+1
>0,
所以
1
n+1
<ln(n+1)=lnn
累加即得
1
n+2
+
1
n+3
+…+
1
2n+2
<ln(2n+2)-ln(n+1)=ln2,
故原不等式成立.  …9分
(Ⅲ)证明:∵bn=λ(an-
1
2
)=
λ(2n+1)
2
,cn=(1-λ)an=(1-λ) (n+1),
1
bncn
=
4
λ(1-λ)(2n+1)(2n+2)
≥16(
1
2n+1
-
1
2n+2
),
∴Tn≥16(
1
3
-
1
4
+
1
5
-
1
6
+…+
1
2n+1
-
1
2n+2
)=16(
1
n+2
+
1
n+3
+…+
1
2n+2
-
1
2
).
令tn=
1
n+2
+
1
n+3
+…+
1
2n+2
,倒序相加可得
2tn=(
1
n+2
+
1
2n+2
)+(
1
n+3
+
1
2n+1
)+…+(
1
2n+2
+
1
n+2
),
∵(n+2)+(2n+2)=3n+4,
∴(3n+4)(
1
n+2
+
1
2n+2
)>4
1
n+2
+
1
2n+2
4
3n+4

同理
1
n+3
+
1
2n+1
4
3n+4
,…,
1
2n+2
+
1
n+2
4
3n+4

∴2tn
4(n+1)
3n+4

∴tn
2(n+1)
3n+4

∴Tn>16[
2(n+1)
3n+4
-
1
2
]=
8n
3n+4

8n
3n+4
-
9n-1
4n+3
=
(5n-4)(n-1)
(3n+4)(4n+3)
>0,
∴Tn
9n-1
4n+3
点评:本题考查数列的通项羽求和,考查导数知识的运用,考查不等式的证明,考查学生分析解决问题的能力,难度大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网