题目内容

如图:在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M、N分别为BC、PA的中点,且PA=AB=2.
(Ⅰ)证明:BC⊥平面AMN;
(Ⅱ)求三棱锥N-AMC的体积.
考点:直线与平面垂直的判定,棱柱、棱锥、棱台的体积
专题:空间位置关系与距离
分析:(Ⅰ)根据四边形ABCD为含有60°角的菱形,证出△ABC为正三角形,从而得到BC⊥AM.由PA⊥平面ABCD,证出PA⊥BC,结合线面垂直的判定定理,证出BC⊥面AMN.
(Ⅱ)由NA⊥平面AMC,NA=1,S△AMC=
1
2
S△ABC
=
1
2
×(
1
2
×2×2×sin60°)
=
3
2
,能求出三棱锥N-AMC的体积.
解答: (Ⅰ)证明:∵四边形ABCD为菱形,∴AB=BC
又∵∠ABC=60°,∴△ABC为正三角形,得AB=BC=CA
∵M是BC的中点,∴BC⊥AM
∵PA⊥平面ABCD,BC?平面ABCD,∴PA⊥BC
∵PA、AM是平面AMN内的相交直线,
∴BC⊥面AMN.
(Ⅱ)解:∵∠ABC=60°,PA⊥平面ABCD,
点M、N分别为BC、PA的中点,且PA=AB=2,
∴NA⊥平面AMC,NA=1,
S△AMC=
1
2
S△ABC
=
1
2
×(
1
2
×2×2×sin60°)
=
3
2

∴三棱锥N-AMC的体积:
V=
1
3
×S△AMC×NA
=
1
3
×
3
2
×1
=
3
6
点评:本题在四棱锥中证明线面垂直,并探索线面平行的存在性问题.着重考查了三角形中位线定理、平行四边形的判定与性质和空间线面平行与线面垂直的判定等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网