题目内容

某单位为绿化环境,移栽了甲、乙两种大树各2株,设甲、乙两种大树移栽的成活率分别
2
3
1
2
,且各株大树是否成活互不影响,求移栽的4株大树中:
(1)求甲种树成活的株数η的方差;
(2)两种大树各成活1株的概率;
(3)成活的株数ξ的分布列与期望.
考点:离散型随机变量的期望与方差,相互独立事件的概率乘法公式
专题:概率与统计
分析:(1)利用二项分布的方差公式,可得结论;
(2)设Ak表示甲种大树成活k株,k=0,1,2,Bl表示乙种大树成活l株,l=0,1,2,则Ak,Bl独立.由独立重复试验中事件发生的概率公式,可求两种大树各成活1株的概率;
(3)确定ξ的所有可能值为0,1,2,3,4,求出相应的概率,即可求出成活的株数ξ的分布列与期望.
解答: 解:(1)甲种树每株成活的概率p=
2
3
Dη=np(1-p)=2×
2
3
×
1
3
=
4
9
…3’
(2)设Ak表示甲种大树成活k株,k=0,1,2,Bl表示乙种大树成活l株,l=0,1,2
则Ak,Bl独立.由独立重复试验中事件发生的概率公式有P(Ak)=Ck2(
2
3
)k(
1
3
)2-k
P(Bl)=Cl2(
1
2
)l(
1
2
)2-l
..…5’
据此算得P(A0)=
1
9
P(A1)=
4
9
P(A2)=
4
9
.P(B0)=
1
4
P(B1)=
1
2
P(B2)=
1
4
…7’
所求概率为P(A2B1)=P(A1)•P(B1)=
4
9
×
1
2
=
2
9
…9’
(3)解法一:ξ的所有可能值为0,1,2,3,4,且P(ξ=0)=P(A0B0)=P(A0)•P(B0)=
1
9
×
1
4
=
1
36
P(ξ=1)=P(A0B1)+P(A1B0)=
1
9
×
1
2
+
4
9
×
1
4
=
1
6
P(ξ=2)=P(A0B2)+P(A1B1)+P(A2B0)=
1
9
×
1
4
+
4
9
×
1
2
+
4
9
×
1
4

=
13
36
P(ξ=3)=P(A1B2)+P(A2B1)=
4
9
×
1
4
+
4
9
×
1
2
=
1
3
.P(ξ=4)=P(A2B2)=
4
9
×
1
4
=
1
9
…11’
综上知ξ有分布列
N(xN,0),
OM
+
ON
=
OQ
0 1 2 3 4
P 1/36 1/6 13/36 1/3 1/9
..…12’
从而,N(xN,0),
OM
+
ON
=
OQ
的期望为Eξ=0×
1
36
+1×
1
6
+2×
13
36
+3×
1
3
+4×
1
9
=
7
3
(株)..…14’
解法二:
分布列的求法同上
令ξ1,ξ2分别表示甲乙两种树成活的株数,则ξ1~B(2,
2
3
),ξ2~B(2,
1
2
)
..…11’
故有Eξ1=2×
2
3
=
4
3
,Eξ2=2×
1
2
=1
..…13’
从而知Eξ=Eξ1+Eξ2=
7
3
..…14’
点评:本题考查的知识点是相互独立事件的概率乘法公式,离散型随机变量及其分布列,离散型随机变量的期望,其中在求随机变量ξ的分布列时,对随机变量的每一个取值,要注意不重不漏,以便准确的计算出ξ取得各值时的概率,这也是计算分布列及数学期望时最容易产生的错误.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网