ÌâÄ¿ÄÚÈÝ
15£®¼×¡¢ÒÒÁ½È˲μÓijµçÊǪ́¾Ù°ìµÄ´ðÌâ´³¹ØÓÎÏ·£¬°´ÕÕ¹æÔò£º¼×ÏÈ´Ó6µÀ±¸Ñ¡ÌâÖÐÒ»´ÎÐÔ³éÈ¡3µÀÌâ¶ÀÁ¢×÷´ð£¬È»ºóÓÉÒһشðÊ£Óà3µÀÌ⣬ÿÈË´ð¶ÔÆäÖÐ2µÀÌâ¾ÍÍ£Ö¹´ðÌ⣬¼´´³¹Ø³É¹¦£®ÒÑÖªÔÚ6µÀ±¸Ñ¡ÌâÖУ¬¼×ÄÜ´ð¶ÔÆäÖеÄ4µÀÌ⣬ÒÒ´ð¶ÔÿµÀÌâµÄ¸ÅÂʶ¼ÊÇ$\frac{2}{3}$£®£¨1£©Çó¼×´³¹Ø³É¹¦µÄ¸ÅÂÊ£»
£¨2£©Çó¼×¡¢ÒÒ¶þÈËÖÁÉÙÓÐÒ»ÈË´³¹Ø³É¹¦µÄ¸ÅÂÊ£»
£¨3£©ÉèÒÒ´ð¶ÔÌâÄ¿µÄ¸öÊýΪ¦Î£¬ÇóËæ»ú±äÁ¿¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
·ÖÎö £¨1£©¶Ô¼×ËùÑ¡µÄÌâÄ¿·ÖÀàÌÖÂÛ£¬ÀûÓÃÏ໥¶ÀÁ¢Ê¼þµÄ¸ÅÂʼÆË㹫ʽ¼´¿ÉµÃ³ö¼×´³¹Ø³É¹¦µÄ¸ÅÂÊ£®
£¨2£©Éè¼×¡¢ÒÒ´³¹Ø³É¹¦·Ö±ðΪʼþA¡¢B£¬ÔòP£¨$\overline{A}$£©=$\frac{{∁}_{4}^{1}{∁}_{2}^{2}}{{∁}_{6}^{3}}$£¬P£¨$\overline{B}$£©=$£¨1-\frac{2}{3}£©^{3}+{∁}_{3}^{2}¡Á\frac{2}{3}¡Á£¨1-\frac{2}{3}£©^{2}$£¬¿ÉµÃ¼×¡¢ÒÒÖÁÉÙÓÐÒ»ÈË´³¹Ø³É¹¦µÄ¸ÅÂÊÊÇ1-P£¨$\overline{A}\overline{B}$£©=1-$P£¨\overline{A}£©P£¨\overline{B}£©$£®
£¨3£©ÓÉÌâÒâ¿ÉµÃ£º¦Î¡«B$£¨3£¬\frac{2}{3}£©$£¬P£¨¦Î=k£©=${∁}_{3}^{k}£¨\frac{2}{3}£©^{k}£¨\frac{1}{3}£©^{3-k}$£¬¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©¼×´³¹Ø³É¹¦µÄ¸ÅÂÊP=$\frac{{∁}_{4}^{1}}{{∁}_{6}^{1}}¡Á\frac{{∁}_{3}^{1}}{{∁}_{5}^{1}}$+$\frac{{∁}_{4}^{1}}{{∁}_{6}^{1}}¡Á\frac{{∁}_{2}^{1}}{{∁}_{5}^{1}}¡Á\frac{{∁}_{3}^{1}}{{∁}_{4}^{1}}$+$\frac{{∁}_{2}^{1}}{{∁}_{6}^{1}}¡Á\frac{{∁}_{4}^{2}}{{∁}_{5}^{2}}$=$\frac{4}{5}$£®
£¨2£©Éè¼×¡¢ÒÒ´³¹Ø³É¹¦·Ö±ðΪʼþA¡¢B£¬
ÔòP£¨$\overline{A}$£©=$\frac{{∁}_{4}^{1}{∁}_{2}^{2}}{{∁}_{6}^{3}}$=$\frac{1}{5}$£¬P£¨$\overline{B}$£©=$£¨1-\frac{2}{3}£©^{3}+{∁}_{3}^{2}¡Á\frac{2}{3}¡Á£¨1-\frac{2}{3}£©^{2}$=$\frac{7}{27}$£¬
Ôò¼×¡¢ÒÒÖÁÉÙÓÐÒ»ÈË´³¹Ø³É¹¦µÄ¸ÅÂÊÊÇ1-P£¨$\overline{A}\overline{B}$£©=1-$P£¨\overline{A}£©P£¨\overline{B}£©$=1-$\frac{1}{5}¡Á\frac{7}{27}$=$\frac{128}{135}$£®
£¨3£©ÓÉÌâÒâ¿ÉµÃ£º¦Î¡«B$£¨3£¬\frac{2}{3}£©$£¬P£¨¦Î=k£©=${∁}_{3}^{k}£¨\frac{2}{3}£©^{k}£¨\frac{1}{3}£©^{3-k}$£¬
| ¦Î | 0 | 1 | 2 | 3 |
| P | $\frac{1}{27}$ | $\frac{6}{27}$ | $\frac{12}{27}$ | $\frac{8}{27}$ |
µãÆÀ ±¾Ì⿼²éÁËÏ໥¶ÀÁ¢Óë¶ÔÁ¢Ê¼þµÄ¸ÅÂʼÆË㹫ʽ¡¢¶þÏî·Ö²¼ÁеÄÐÔÖʼ°ÆäÊýѧÆÚÍû£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | -6 | B£® | 6 | C£® | -5 | D£® | 5 |
| A£® | ¢Ù¢Ú | B£® | ¢Ù¢Ü | C£® | ¢Ú¢Ü | D£® | ¢Û¢Ü |