ÌâÄ¿ÄÚÈÝ
20£®ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Èô$\frac{1}{2}¡Ü\frac{{{a_{n+1}}}}{a_n}¡Ü2$£¨n¡ÊN*£©£¬Ôò³Æ{an}ÊÇ¡°½ôÃÜÊýÁС±£»£¨1£©Èôa1=1£¬${a_2}=\frac{3}{2}$£¬a3=x£¬a4=4£¬ÇóxµÄȡֵ·¶Î§£»
£¨2£©Èô{an}ΪµÈ²îÊýÁУ¬Ê×Ïîa1£¬¹«²îd£¬ÇÒ0£¼d¡Üa1£¬ÅжÏ{an}ÊÇ·ñΪ¡°½ôÃÜÊýÁС±£»
£¨3£©ÉèÊýÁÐ{an}Êǹ«±ÈΪqµÄµÈ±ÈÊýÁУ¬ÈôÊýÁÐ{an}Óë{Sn}¶¼ÊÇ¡°½ôÃÜÊýÁС±£¬ÇóqµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©ÓÉÌâÒ⣬$\frac{1}{2}¡Ü\frac{x}{\frac{3}{2}}¡Ü2$ÇÒ$\frac{1}{2}¡Ü\frac{4}{x}¡Ü2$£¬¼´¿ÉÇó³öxµÄȡֵ·¶Î§£»
£¨2£©ÓÉÌâÒ⣬an=a1+£¨n-1£©d£¬$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{{a}_{1}+nd}{{a}_{1}+£¨n-1£©d}$=1+$\frac{1}{\frac{{a}_{1}}{d}+n-1}$$£¾1¡Ý\frac{1}{2}$£¬¸ù¾Ý¡°½ôÃÜÊýÁС±µÄ¶¨Òå¼´¿ÉÖ¤Ã÷½áÂÛ£»
£¨3£©ÏÈÉ蹫±ÈÊÇq²¢Åжϳöq¡Ù1£¬ÓɵȱÈÊýÁеÄͨÏʽ¡¢Ç°nÏîºÍ¹«Ê½»¯¼ò$\frac{{a}_{n+1}}{{a}_{n}}$£¬$\frac{{S}_{n+1}}{{S}_{n}}$£¬¸ù¾Ý¡°½ôÃÜÊýÁС±µÄ¶¨ÒåÁгö²»µÈʽ×飬ÔÙÇó³ö¹«±ÈqµÄȡֵ·¶Î§£®
½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬$\frac{1}{2}¡Ü\frac{x}{\frac{3}{2}}¡Ü2$ÇÒ$\frac{1}{2}¡Ü\frac{4}{x}¡Ü2$£¬¡à2¡Üx¡Ü3£¬
¡àxµÄȡֵ·¶Î§ÊÇ[2£¬3]£»
£¨2£©ÓÉÌâÒ⣬an=a1+£¨n-1£©d£¬¡à$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{{a}_{1}+nd}{{a}_{1}+£¨n-1£©d}$=1+$\frac{1}{\frac{{a}_{1}}{d}+n-1}$$£¾1¡Ý\frac{1}{2}$£¬
$\frac{{a}_{n+1}}{{a}_{n}}$Ëæ×ÅnµÄÔö´ó¶ø¼õС£¬ËùÒÔµ±n=1ʱ£¬$\frac{{a}_{n+1}}{{a}_{n}}$È¡µÃ×î´óÖµ£¬¡à$\frac{{a}_{n+1}}{{a}_{n}}$¡Ü2£¬
¡à{an}ÊÇ¡°½ôÃÜÊýÁС±£»
£¨3£©ÓÉÌâÒâµÃ£¬µÈ±ÈÊýÁÐ{an}µÄ¹«±Èq
µ±q¡Ù1ʱ£¬ËùÒÔan=a1qn-1£¬Sn=$\frac{{a}_{1}£¨1-{q}^{n}£©}{1-q}$£¬$\frac{{S}_{n+1}}{{S}_{n}}$=$\frac{1-{q}^{n+1}}{1-{q}^{n}}$£¬
ÒòΪÊýÁÐ{an}Óë{Sn}¶¼ÊÇ¡°½ôÃÜÊýÁС±£¬ËùÒÔ$\frac{1}{2}¡Üq¡Ü2$£¬$\frac{1}{2}¡Ü$$\frac{1-{q}^{n+1}}{1-{q}^{n}}$¡Ü2£¬½âµÃ$\frac{1}{2}¡Üq¡Ü1$£¬
µ±q=1ʱ£¬an=a1£¬Sn=na1£¬Ôò $\frac{{a}_{n+1}}{{a}_{n}}$=1£¬$\frac{{S}_{n+1}}{{S}_{n}}$=1+$\frac{1}{n}$¡Ê£¨1£¬$\frac{3}{2}$]£¬·ûºÏÌâÒ⣬
¡àqµÄȡֵ·¶Î§ÊÇ$[\frac{1}{2}£¬1]$£®
µãÆÀ ±¾ÌâÊÇж¨ÒåÌ⣬¿¼²éÊýÁеÄanÓëSnµÄ¹ØÏµÊ½£¬µÈ±ÈÊýÁеÄͨÏʽ¡¢Ç°nÏîºÍ¹«Ê½£¬½âÌâµÄ¹Ø¼üÊÇÕýÈ·Àí½âж¨Òå²¢»áÓ¦Óã®
| A£® | $\frac{1}{2}+\frac{1}{2}i$ | B£® | $\frac{1}{4}+\frac{1}{2}i$ | C£® | $\frac{2}{5}+\frac{2}{5}i$ | D£® | $\frac{1}{5}+\frac{2}{5}i$ |
| A£® | 25 | B£® | 5 | C£® | -15 | D£® | -20 |
| A£® | a=3£¬i=1 | B£® | a=18£¬i=16 | C£® | a=18£¬i=15 | D£® | a=9£¬i=7 |