题目内容


已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形.

(I)求椭圆方程;

(Ⅱ)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点,证明:为定值;

(III)在(Ⅱ)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点?若存在,求出点Q的坐标;若不存在,请说明理由.



解:(I)椭圆方程为,………4分

(Ⅱ),设,则,

直线,即

代入椭圆,

(定值),………10分

(III)设存在满足条件,则,

则由=0得,从而得m=0

∴存在Q(0,0)满足条件       

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网