题目内容

7.若等边三角形ABC的边长为12,平面内一点M满足$\overrightarrow{CM}=\frac{3}{4}\overrightarrow{CA}+\frac{1}{3}\overrightarrow{CB}$,则$\overrightarrow{AM}•\overrightarrow{BM}$=(  )
A.-26B.-27C.-28D.-29

分析 由已知建立平面直角坐标系,求出点A,B,C的坐标,利用向量的坐标运算求解.

解答 解:建立如图所示平面直角坐标系,

则A(-6,0),B(6,0),C(0,$6\sqrt{3}$),
∴$\overrightarrow{CA}=(-6,-6\sqrt{3})$,$\overrightarrow{CB}=(6,-6\sqrt{3})$.
则$\overrightarrow{CM}=\frac{3}{4}\overrightarrow{CA}+\frac{1}{3}\overrightarrow{CB}$=$\frac{3}{4}(-6,-6\sqrt{3})+\frac{1}{3}(6,-6\sqrt{3})$=$(-\frac{5}{2},-\frac{13\sqrt{3}}{2})$.
∴$\overrightarrow{AM}=\overrightarrow{AC}+\overrightarrow{CM}$=($\frac{7}{2},-\frac{\sqrt{3}}{2}$),
$\overrightarrow{BM}=\overrightarrow{BC}+\overrightarrow{CM}$=(-$\frac{17}{2},-\frac{\sqrt{3}}{2}$).
则$\overrightarrow{AM}•\overrightarrow{BM}$=$\frac{7}{2}×(-\frac{17}{2})+\frac{3}{4}=-29$.
故选:D.

点评 本题考查平面向量的数量积运算,考查平面向量基本定理的应用,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网