题目内容

17.已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{4}{{({{a_n}+1})({{a_n}+5})}}$,数列{bn}前n项和为Tn,求证:Tn<$\frac{3}{4}$.

分析 (1)利用已知条件求出数列的首项,然后求解通项公式.
(2)化简数列的通项公式,利用裂项消项法求解数列的和,然后证明结果.

解答 解:(1)因为等差数列{an}的公差为2,前n项和为Sn,∴${S_n}=n{a_1}+\frac{{n({n-1})}}{2}d={n^2}-n+n{a_1}$,
∵S1,S2,S4成等比数列,∴$S_2^2={S_1}•{S_4}$,∴${({{2^2}-2+2{a_1}})^2}={a_1}•({{4^2}-4+4{a_1}})$,化为${({1+{a_1}})^2}={a_1}({3+{a_1}})$,
解得a1=1.
∴an=a1+(n-1)d=1+2(n-1)=2n-1.
(2)证明:由(1)可得an=2n-1,则${b_n}=\frac{4}{{({{a_n}+1})({{a_n}+5})}}=\frac{4}{{({2n-1+1})({2n-1+5})}}=\frac{1}{{n({n+2})}}=\frac{1}{2}({\frac{1}{n}-\frac{1}{n+2}})$,
∴Tn=b1+b2+b3+…+bn=$\frac{1}{2}({1-\frac{1}{3}})+\frac{1}{2}({\frac{1}{2}-\frac{1}{4}})+\frac{1}{2}({\frac{1}{3}-\frac{1}{5}})+\frac{1}{2}({\frac{1}{4}-\frac{1}{6}})+…+\frac{1}{2}({\frac{1}{n}-\frac{1}{n+2}})$
=$\frac{1}{2}({1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+\frac{1}{4}-\frac{1}{6}+…+\frac{1}{n}-\frac{1}{n+2}})$
=$\frac{1}{2}({1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}})=\frac{3}{4}-\frac{2n+3}{{2({n+1})({n+2})}}$,
∵n∈N+,∴$\frac{2n+3}{{2({n+1})({n+2})}}>0$,
∴$\frac{3}{4}-\frac{2n+3}{{2({n+1})({n+2})}}<\frac{3}{4}$,即${T_n}<\frac{3}{4}$,
综上所述,${T_n}<\frac{3}{4}$.

点评 本题考查数列的递推关系式以及函数的求和的方法,考查分析问题解决问题的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网