题目内容

5.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow{b}$=(cosα,sinα)(α∈R)
(I)若α=-$\frac{π}{6}$,试用基底$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{c}$=(2$\sqrt{3}$,0);
(II)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求α值.

分析 (1)采用待定系数法,根据向量相等,建立方程组求解.
(2)根据垂直关系,转化为数量积为0,得三角函数的关系式,求得向量$\overrightarrow{a}$.

解答 (本小题满分12分)
解:(I)当$α=-\frac{π}{6}$时,$\overrightarrow{b}$=$(\frac{\sqrt{3}}{2},-\frac{1}{2})$…(1分)
设$\overrightarrow{c}=λ\overrightarrow{a}+μ\overrightarrow{b}$,
则$(2\sqrt{3},0)$=$λ(\sqrt{3},1)+μ(\frac{\sqrt{3}}{2},-\frac{1}{2})$=$(\sqrt{3}λ+\frac{\sqrt{3}}{2}μ,λ-\frac{1}{2}μ)$…(3分)
∴$\left\{\begin{array}{l}{2\sqrt{3}=\sqrt{3}λ+\frac{\sqrt{3}}{2}μ}\\{0=λ-\frac{1}{2}μ}\end{array}\right.$∴$\left\{\begin{array}{l}{λ=1}\\{μ=2}\end{array}\right.$…(5分)
∴$\overrightarrow{c}=\overrightarrow{a}+2\overrightarrow{b}$…(6分)
(II)由$\overrightarrow{a}⊥\overrightarrow{b}$,得$\overrightarrow{a}•\overrightarrow{b}=\sqrt{3}cosα+sinα=0$…(8分)
∴$sinα=-\sqrt{3}cosα$
∴$tanα=-\frac{\sqrt{3}}{3}$…(10分)
∴$α=kπ-\frac{π}{6}$(k∈Z).…(12分)

点评 考查平面向量的平面向量基本定理,坐标运算,三角函数求值.属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网