题目内容

12.甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图所示,${\overline{x}}_{1}$,${\overline{x}}_{2}$分别表示甲、乙两名运动员这项测试成绩的平均数,s${\;}_{1}^{2}$,s${\;}_{2}^{2}$分别表示甲、乙两名运动员这项测试成绩的方差,则有(  )
A.${\overline{x}}_{1}$>${\overline{x}}_{2}$,s${\;}_{1}^{2}$<${s}_{2}^{2}$B.${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$>${s}_{2}^{2}$
C.${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$=${s}_{2}^{2}$D.${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$<${s}_{2}^{2}$

分析 分别计算甲、乙运动员成绩的平均数与方差,进行比较即可.

解答 解:根据茎叶图中的数据,得;
甲运动员成绩的平均数是$\overline{{x}_{1}}$=$\frac{1}{6}$(9+14+15+15+16+21)=15,
方差是${{s}_{1}}^{2}$=$\frac{1}{6}$[(9-15)2+(14-15)2+2×(15-15)2+(16-15)2+(21-15)2]=$\frac{74}{6}$;
乙运动员成绩的平均数是$\overline{{x}_{2}}$=$\frac{1}{6}$(8+13+15+15+17+22)=15,
方差是${{s}_{2}}^{2}$=$\frac{1}{6}$[(8-15)2+(13-15)2+2×(15-15)2+(17-15)2+(22-15)2]=$\frac{106}{6}$;
∴$\overline{{x}_{1}}$=$\overline{{x}_{2}}$,${{s}_{1}}^{2}$<${{s}_{2}}^{2}$.
故选:D,

点评 本题考查了求数据的平均数与方差、标准差的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网