题目内容

11.已知抛物线C:y2=4x,过焦点且与坐标轴不平行的直线与该抛物线相交于A、B两点,记线段AB中点为P(x0,y0).
(Ⅰ)若x0=2,求直线AB的斜率;
(Ⅱ)设线段AB的垂直平分线与x轴,y轴分别相交于点D、E.当直线AB的斜率大于$\frac{{\sqrt{3}}}{3}$时,求$\frac{|AB|}{|DE|}$的取值范围.

分析 (Ⅰ)设直线方程为y=k(x-1),代入y2=4x,利用韦达定理,结合x0=2,求直线AB的斜率;
(Ⅱ)求出线段AB的垂直平分线方程,表示$\frac{|AB|}{|DE|}$,即可求$\frac{|AB|}{|DE|}$的取值范围.

解答 解:(Ⅰ)设直线方程为y=k(x-1),代入y2=4x,整理得k2x2-(2k2+4)x+k2=0,
设A(x1,y1),B(x2,y2),则x1+x2=$\frac{2{k}^{2}+4}{{k}^{2}}$,∴x0=$\frac{{k}^{2}+2}{{k}^{2}}$=2,
∴k=$±\sqrt{2}$.
(Ⅱ)由(Ⅰ)知x0=$\frac{{k}^{2}+2}{{k}^{2}}$,y0=$\frac{2}{k}$,
线段AB的垂直平分线方程为y-$\frac{2}{k}$=-$\frac{1}{k}$(x-$\frac{{k}^{2}+2}{{k}^{2}}$).
令y=0,可得x=$\frac{3{k}^{2}+2}{{k}^{2}}$,令x=0,y=$\frac{3{k}^{2}+2}{{k}^{3}}$,
∴|DE|=$\frac{3{k}^{2}+2}{{k}^{3}}$•$\sqrt{{k}^{2}+1}$,
|AB|=x1+x2+p=$\frac{4({k}^{2}+1)}{{k}^{2}}$,
∴$\frac{|AB|}{|DE|}$=$\frac{4\sqrt{{k}^{2}({k}^{2}+1)}}{3{k}^{2}+2}$,
设t=3k2+2(t>3),则
$\frac{|AB|}{|DE|}$=$\frac{4}{3}\sqrt{\frac{9}{8}-2(\frac{1}{t}+\frac{1}{4})^{2}}$∈($\frac{8}{9}$,$\frac{4}{3}$).

点评 本题考查直线与抛物线的位置关系,考查抛物线的性质,考查韦达定理的运用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网