题目内容

8.如图,空间四边形OABC中,点M在OA上,且OM=2MA,点N为BC中点,$\overrightarrow{MN}=x\overrightarrow{OA}+y\overrightarrow{OB}+z\overrightarrow{OC}$,则x,y,z的值分别是(  )
A.$-\frac{2}{3},\frac{1}{2},\frac{1}{2}$B.$\frac{1}{2},-\frac{2}{3},\frac{1}{2}$C.$\frac{1}{2},\frac{1}{2},-\frac{1}{2}$D.$\frac{2}{3},\frac{2}{3},-\frac{1}{2}$

分析 根据题意,结合图形,出用$\overrightarrow{OA}$、$\overrightarrow{OB}$和$\overrightarrow{OC}$表示出$\overrightarrow{ON}$、$\overrightarrow{MN}$即可.

解答 解:因为空间四边形OABC中,如图所示;
点M在线段OA上,且OM=2MA,N为BC的中点,
所以$\overrightarrow{ON}$=$\frac{1}{2}$($\overrightarrow{OB}$+$\overrightarrow{OC}$),
所以$\overrightarrow{MN}$=$\overrightarrow{ON}$-$\overrightarrow{OM}$=$\overrightarrow{ON}$+$\overrightarrow{MO}$=$\frac{1}{2}$$\overrightarrow{OB}$+$\frac{1}{2}$$\overrightarrow{OC}$-$\frac{2}{3}$$\overrightarrow{OA}$;
又$\overrightarrow{MN}=x\overrightarrow{OA}+y\overrightarrow{OB}+z\overrightarrow{OC}$,
∴x=-$\frac{2}{3}$,y=$\frac{1}{2}$,z=$\frac{1}{2}$.
故选:A.

点评 本题考查了空间向量的基本运算问题,也考查了数形结合的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网