题目内容
5.已知X~B(10,$\frac{1}{3}$),则( )| A. | EX=$\frac{10}{3}$,DX=$\frac{20}{3}$ | B. | EX=$\frac{20}{3}$,DX=$\frac{10}{3}$ | C. | EX=$\frac{10}{3}$,DX=$\frac{20}{9}$ | D. | EX=$\frac{20}{3}$,DX=$\frac{20}{9}$ |
分析 利用期望与方差公式,求解即可.
解答 解:由题意可得:EX=10×$\frac{1}{3}$=$\frac{10}{3}$,DX=10×$\frac{1}{3}×\frac{2}{3}$=$\frac{20}{9}$.
故选:C.
点评 本题考查离散型随机变量的期望与方程,考查计算能力.
练习册系列答案
相关题目
13.若偶函数f(x)在区间(-∞,0]上单调递减,且f(3)=0,则不等式(x-1)f(x)>0的解集是( )
| A. | (-∞,-1)∪(1,+∞) | B. | (-3,1)∪(3,+∞) | C. | (-∞,-3)∪(3,+∞) | D. | (-3,1]∪(3,+∞) |
20.二项式(a+2b)n展开式中的第二项系数是8,则它的第三项的二项式系数为( )
| A. | 24 | B. | 18 | C. | 6 | D. | 16 |
14.某经销商从沿海城市水产养殖厂购进一批某海鱼,随机抽取50条作为样本进行统计,按海鱼重量(克)得到如图的频率分布直方图:

(Ⅰ)若经销商购进这批海鱼100千克,试估计这批海鱼有多少条(同一组中的数据用该区间的中点值作代表);
(Ⅱ)根据市场行情,该海鱼按重量可分为三个等级,如下表:
若经销商以这50条海鱼的样本数据来估计这批海鱼的总体数据,视频率为概率.现从这批海鱼中随机抽取3条,记抽到二等品的条数为X,求x的分布列和数学期望.
(Ⅰ)若经销商购进这批海鱼100千克,试估计这批海鱼有多少条(同一组中的数据用该区间的中点值作代表);
(Ⅱ)根据市场行情,该海鱼按重量可分为三个等级,如下表:
| 等级 | 一等品 | 二等品 | 三等品 |
| 重量(g) | [165,185] | [155,165) | [145,155) |