题目内容

17.如图,在正三棱柱ABCA1B1C1中,E,F分别为BB1,AC的中点.求证:BF∥平面A1EC.

分析 以F为原点,FC为x轴,FB为y轴,过F作平面ABC的垂线为z轴,建立空间直角坐标系,利用向量法能证明BF∥平面A1EC.

解答 证明:以F为原点,FC为x轴,FB为y轴,过F作平面ABC的垂线为z轴,
建立空间直角坐标系,
设AB=2,AA1=2t,则B(0,$\sqrt{3}$,0),F(0,0,0),
A1(-1,0,2t),C(1,0,0),E(0,$\sqrt{3}$,t),
$\overrightarrow{FB}$=(0,$\sqrt{3}$,0),$\overrightarrow{C{A}_{1}}$=(-2,0,2t),$\overrightarrow{CE}$=(-1,$\sqrt{3},t$),
设平面A1EC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{C{A}_{1}}=-2x+2tz=0}\\{\overrightarrow{n}•\overrightarrow{CE}=-x+\sqrt{3}y+tz=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=(t,0,1),
∵$\overrightarrow{FB}•\overrightarrow{n}$=0,且BF?平面A1EC,
∴BF∥平面A1EC.

点评 本题考查线面平行的证明,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网