题目内容
11.设x,y满足约束条件$\left\{\begin{array}{l}y-x≤1\\ x+y≤3\\ y≥m\end{array}\right.$,若z=x+3y的最大值与最小值的差为7,则实数m=( )| A. | $\frac{3}{2}$ | B. | $-\frac{3}{2}$ | C. | $\frac{1}{4}$ | D. | $-\frac{1}{4}$ |
分析 由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,进一步求出最值,结合最大值与最小值的差为7求得实数m的值.
解答
解:由约束条件$\left\{\begin{array}{l}y-x≤1\\ x+y≤3\\ y≥m\end{array}\right.$作出可行域如图,
联立$\left\{\begin{array}{l}{y-x=1}\\{x+y=3}\end{array}\right.$,解得A(1,2),
联立$\left\{\begin{array}{l}{y=m}\\{y-x=1}\end{array}\right.$,解得B(m-1,m),
化z=x+3y,得$y=-\frac{x}{3}+\frac{z}{3}$.
由图可知,当直线$y=-\frac{x}{3}+\frac{z}{3}$过A时,z有最大值为7,
当直线$y=-\frac{x}{3}+\frac{z}{3}$过B时,z有最小值为4m-1,
由题意,7-(4m-1)=7,解得:m=$\frac{1}{4}$.
故选:C.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
1.已知某圆锥曲线C的极坐标方程是ρ2=$\frac{225}{9+16co{s}^{2}θ}$,则曲线C的离心率为( )
| A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{5}{3}$ | D. | $\frac{5}{4}$ |
19.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的两个焦点分别为F1,F2,|F1F2|=2c(c>0).若点P在椭圆上,且∠F1PF2=90°,则点P到x轴的距离为( )
| A. | $\frac{b^2}{a}$ | B. | $\frac{b^2}{c}$ | C. | $\frac{c^2}{a}$ | D. | $\frac{c^2}{b}$ |
3.设集合A={x|x>a},集合B={-1,1,2},若A∩B=B,则实数a的取值范围是( )
| A. | (1,+∞) | B. | (-∞,1) | C. | (-1,+∞) | D. | (-∞,-1) |