题目内容
已知f1(x)=sinx+cosx,fn+1(x)是fn (x)的导函数,即f2(x)=f′1(x),f3(x)=f′2(x),…,fn+1(x)=f′n(x),n∈N*,则f2012(x)=( )
| A、sinx+cosx |
| B、sinx-cosx |
| C、-sinx+cosx |
| D、-sinx-cosx |
考点:导数的运算
专题:导数的概念及应用
分析:利用导数的运算法则,通过计算即可得出其周期性fn+4(x)=fn(x)进而即可得出答案.
解答:
解:∵f1(x)=sinx+cosx,fn+1(x)是fn(x)的导函数,
∴f2(x)=f1′(x)=cosx-sinx,f3(x)=f2′(x)=-sinx-cosx,f4(x)=-cosx+sinx,f5(x)=sinx+cosx…,
∴fn+4(x)=fn(x),
∴f2012(x)=f503×4(x)=f4(x)=sinx-cosx.
故选B.
∴f2(x)=f1′(x)=cosx-sinx,f3(x)=f2′(x)=-sinx-cosx,f4(x)=-cosx+sinx,f5(x)=sinx+cosx…,
∴fn+4(x)=fn(x),
∴f2012(x)=f503×4(x)=f4(x)=sinx-cosx.
故选B.
点评:熟练掌握导数的运算法则及得出其周期性fn+4(x)=fn(x)是解题的关键.
练习册系列答案
相关题目
从高一(9)班54名学生中选出5名学生参加学生代表大会,若采用下面的方法选取:先用简单随机抽样从54人中剔除4人,剩下的50人再按系统抽样的方法抽取5人,则这54人中,每人入选的概率( )
A、都相等,且等于
| ||
B、都相等,且等于
| ||
| C、均不相等 | ||
| D、不全相等 |
半径为R的圆内接正n边形的面积为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
一个正整数数表如下(表中下一行中的数的个数是上一行中数的个数的2倍):
则第9行中的第4个数是( )
| 第一行 | 1 |
| 第二行 | 2、3 |
| 第三行 | 4、5、6、7 |
| … | … |
| A、132 | B、255 |
| C、259 | D、260 |
已知集合M={0,1,2,3},N={x|x2-3x<0},则M∩N=( )
| A、{0} |
| B、{x|x<0} |
| C、{x|0<x<3} |
| D、{1,2} |
若偶函数f(x)在[-1,0]上为减函数,α,β为任意一锐角三角形的两个内角,则( )
| A、f(cosα)>f(cosβ) |
| B、f(sinα)>f(sinβ) |
| C、f(sinα)>f(cosβ) |
| D、f(cosα)>f(sinβ) |
如图,在圆O中,若弦AB=3,弦AC=5,则
•
的值( )

| AO |
| BC |
| A、-8 | B、-1 | C、1 | D、8 |
已知圆O:x2+y2=25,点A(-3,0)、B(3,0),一条抛物线以圆O的切线为准线且过点A和B,则这列抛物线的焦点的轨迹方程是( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|