题目内容

10.已知 $({1+x}){({2-x})^6}={a_0}+{a_1}(x-1)+{a_2}{(x-1)^2}+…+{a_7}{(x-1)^7}$,则a3=-25.

分析 把等式的左边化为[(x-1)+2]•[(x-1)-1]6,再按照二项式定理展开,可得(x-1)3的系数a3的值.

解答 解:∵(1+x)•(2-x)6=[(x-1)+2]•(1-x+1)6=[(x-1)+2]•[(x-1)-1]6 
=[(x-1)+2][${C}_{6}^{0}$•(x-1)6-${C}_{6}^{1}$•(x-1)5+${C}_{6}^{2}$•(x-1)4-${C}_{6}^{3}$•(x-1)3+${C}_{6}^{4}$•(x-1)2-${C}_{6}^{5}$•(x-1)+${C}_{6}^{6}$],
且 $({1+x}){({2-x})^6}={a_0}+{a_1}(x-1)+{a_2}{(x-1)^2}+…+{a_7}{(x-1)^7}$,
故a3=-2${C}_{6}^{3}$+${C}_{6}^{4}$=-25,
故答案为:-25.

点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网