题目内容
10.已知 $({1+x}){({2-x})^6}={a_0}+{a_1}(x-1)+{a_2}{(x-1)^2}+…+{a_7}{(x-1)^7}$,则a3=-25.分析 把等式的左边化为[(x-1)+2]•[(x-1)-1]6,再按照二项式定理展开,可得(x-1)3的系数a3的值.
解答 解:∵(1+x)•(2-x)6=[(x-1)+2]•(1-x+1)6=[(x-1)+2]•[(x-1)-1]6
=[(x-1)+2][${C}_{6}^{0}$•(x-1)6-${C}_{6}^{1}$•(x-1)5+${C}_{6}^{2}$•(x-1)4-${C}_{6}^{3}$•(x-1)3+${C}_{6}^{4}$•(x-1)2-${C}_{6}^{5}$•(x-1)+${C}_{6}^{6}$],
且 $({1+x}){({2-x})^6}={a_0}+{a_1}(x-1)+{a_2}{(x-1)^2}+…+{a_7}{(x-1)^7}$,
故a3=-2${C}_{6}^{3}$+${C}_{6}^{4}$=-25,
故答案为:-25.
点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,属于中档题.
练习册系列答案
相关题目
18.已知$sin(x-\frac{3π}{2})=\frac{4}{5}$,则cos(π-x)=( )
| A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | -$\frac{4}{5}$ |
5.若集合$M=\{x|y={log_2}(-{x^2}+x+6)\}$,N={y|y=x2+1,x∈R},则集合M∩N=( )
| A. | (-2,+∞) | B. | (-2,3) | C. | [1,3) | D. | R |
15.若$x∈(0,1),a=lnx,b={(\frac{1}{2})^{lnx}},c={2^{lnx}}$,则a,b,c的大小关系是( )
| A. | a>b>c | B. | b>a>c | C. | b>c>a | D. | c>b>a |
2.下列各数中最小的数为( )
| A. | 101111(2) | B. | 1210(3) | C. | 112(8) | D. | 69(12) |