题目内容
5.学校高二足球队有男运动员16人,女运动员8人,现用分层抽样的方法从中抽取一个容量为9的样本,则抽取男运动员的人数是6.分析 根据分层抽样原理,计算容量为9的样本中男运动员的人数即可.
解答 解:根据分层抽样原理,抽取一个容量为9的样本,
应抽取男运动员的人数是9×$\frac{16}{16+8}$=6.
故答案为:6.
点评 本题考查了分层抽样原理的应用问题,是基础题.
练习册系列答案
相关题目
15.
如图,在直角梯形ABCD中,AB∥CD,AB=2,AD=DC=1,P是线段BC上一动点,Q是线段DC上一动点,$\overrightarrow{DQ}$=λ$\overrightarrow{DC}$,$\overrightarrow{CP}$=(1-λ)$\overrightarrow{CB}$,则$\overrightarrow{AP}$•$\overrightarrow{AQ}$的取值范围是( )
| A. | (-∞,$\frac{9}{4}$] | B. | [0,2] | C. | [0,3] | D. | [0,$\frac{9}{4}$] |
16.已知动点P在椭圆$\frac{x^2}{36}+\frac{y^2}{27}=1$上,若点A的坐标为(3,0),点M满足$|\overrightarrow{AM}|=1$,$\overrightarrow{PM}•\overrightarrow{AM}=0$,则$|\overrightarrow{PM}|$的最小值是( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $2\sqrt{2}$ | D. | 3 |
6.若数列{an}是以2为首项,3为公比的等比数列,则a2+a4+a6+…+a2n的值为( )
| A. | 32n-1 | B. | $\frac{{3}^{2n}-1}{4}$ | C. | $\frac{3({3}^{2n}-1)}{4}$ | D. | $\frac{3({3}^{n}-1)}{4}$ |