题目内容
已知数列{an}的前n项和Sn满足an+1=Sn+n+1(n∈N*),且a2,a3+2,a4成等差数列.
(1)求a1;
(2)求数列{an}的通项公式;
(3)证明:
-
<
+
+…
<
(n∈N*).
(1)求a1;
(2)求数列{an}的通项公式;
(3)证明:
| n |
| 2 |
| 1 |
| 3 |
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(1)由已知条件分别求出a2,a3,a4,由a2,a3+2,a4成等差数列,能求出a1.
(2)由已知条件求出an+1+1=2(an+1),由此能求出数列{an}的通项公式.
(3)由
<
,推导出
+
+…+
<
.再由
>
-
,能证明
-
<
+
+…
<
(n∈N*).
(2)由已知条件求出an+1+1=2(an+1),由此能求出数列{an}的通项公式.
(3)由
| ak |
| ak+1 |
| 1 |
| 2 |
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
| ak |
| ak+1 |
| n |
| 2 |
| 1 |
| 3 |
| n |
| 2 |
| 1 |
| 3 |
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
解答:
解:(1)由an+1=Sn+n+1(n∈N*),
得a2=S1+2=a1+2,
a3=S2+3=a1+a2+3=2a1+5,
a4=S3+4=a1+a2+a3+4=4a1+11…(1分)
∵a2,a3+2,a4成等差数列,
∴2(a3+2)=a2+a42(2a1+7)=a1+2+4a1+11,…(2分)
解得a1=1.…(3分)
(2)当n≥2(n∈N*),
an+1=Sn+n+1,an=Sn-1+n,
两式相减得an+1-an=Sn+n+1-(Sn-1+n)=an+1,
即an+1=2an+1…(4分)
∴an+1+1=2(an+1),…(5分)
又a2=S1+2=a1+2=3,a2+1=2(a1+1)…(6分)
∴{an+1}是以a1+1=2为首项,2为公比的等比数列.…(7分)
∴an+1=2n.即 an=2n-1(n∈N*).…(8分)
(3)证明:∵
=
=
<
,k=1,2,…,n,…(9分)
∴
+
+…+
<
.…(10分)
∵
=
=
-
=
-
≥
-
.
,k=1,2,…,n,…(11分)
∴
+
+…+
≥
-
(
+
+…+
)=
-
(1-
)>
-
,…(13分)
∴
-
<
+
+…+
<
(n∈N*).…(14分)
得a2=S1+2=a1+2,
a3=S2+3=a1+a2+3=2a1+5,
a4=S3+4=a1+a2+a3+4=4a1+11…(1分)
∵a2,a3+2,a4成等差数列,
∴2(a3+2)=a2+a42(2a1+7)=a1+2+4a1+11,…(2分)
解得a1=1.…(3分)
(2)当n≥2(n∈N*),
an+1=Sn+n+1,an=Sn-1+n,
两式相减得an+1-an=Sn+n+1-(Sn-1+n)=an+1,
即an+1=2an+1…(4分)
∴an+1+1=2(an+1),…(5分)
又a2=S1+2=a1+2=3,a2+1=2(a1+1)…(6分)
∴{an+1}是以a1+1=2为首项,2为公比的等比数列.…(7分)
∴an+1=2n.即 an=2n-1(n∈N*).…(8分)
(3)证明:∵
| ak |
| ak+1 |
| 2k-1 |
| 2k+1-1 |
| 2k-1 | ||
2(2k-
|
| 1 |
| 2 |
∴
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
∵
| ak |
| ak+1 |
| 2k-1 |
| 2k+1-1 |
| 1 |
| 2 |
| 1 |
| 2(2k+1-1) |
| 1 |
| 2 |
| 1 |
| 3.2k+2k-2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2k |
∴
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| n |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n |
| n |
| 2 |
| 1 |
| 3 |
∴
| n |
| 2 |
| 1 |
| 3 |
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意放缩法的合理运用.
练习册系列答案
相关题目