题目内容

已知数列{an}的前n项和Sn满足an+1=Sn+n+1(n∈N*),且a2,a3+2,a4成等差数列.
(1)求a1
(2)求数列{an}的通项公式;
(3)证明:
n
2
-
1
3
a1
a2
+
a2
a3
+…
an
an+1
n
2
(n∈N*).
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(1)由已知条件分别求出a2,a3,a4,由a2,a3+2,a4成等差数列,能求出a1
(2)由已知条件求出an+1+1=2(an+1),由此能求出数列{an}的通项公式.
(3)由
ak
ak+1
1
2
,推导出
a1
a2
+
a2
a3
+…+
an
an+1
n
2
.再由
ak
ak+1
n
2
-
1
3
,能证明
n
2
-
1
3
a1
a2
+
a2
a3
+…
an
an+1
n
2
(n∈N*).
解答: 解:(1)由an+1=Sn+n+1(n∈N*)
得a2=S1+2=a1+2,
a3=S2+3=a1+a2+3=2a1+5,
a4=S3+4=a1+a2+a3+4=4a1+11…(1分)
∵a2,a3+2,a4成等差数列,
∴2(a3+2)=a2+a42(2a1+7)=a1+2+4a1+11,…(2分)
解得a1=1.…(3分)
(2)当n≥2(n∈N*),
an+1=Sn+n+1,an=Sn-1+n,
两式相减得an+1-an=Sn+n+1-(Sn-1+n)=an+1,
即an+1=2an+1…(4分)
∴an+1+1=2(an+1),…(5分)
又a2=S1+2=a1+2=3,a2+1=2(a1+1)…(6分)
∴{an+1}是以a1+1=2为首项,2为公比的等比数列.…(7分)
an+1=2n.即 an=2n-1(n∈N*).…(8分)
(3)证明:∵
ak
ak+1
=
2k-1
2k+1-1
=
2k-1
2(2k-
1
2
)
1
2
,k=1,2,…,n
,…(9分)
a1
a2
+
a2
a3
+…+
an
an+1
n
2
.…(10分)
ak
ak+1
=
2k-1
2k+1-1
=
1
2
-
1
2(2k+1-1)
=
1
2
-
1
3.2k+2k-2
1
2
-
1
3
.
1
2k
,k=1,2,…,n
,…(11分)
a1
a2
+
a2
a3
+…+
an
an+1
n
2
-
1
3
(
1
2
+
1
22
+…+
1
2n
)=
n
2
-
1
3
(1-
1
2n
)>
n
2
-
1
3
,…(13分)
n
2
-
1
3
a1
a2
+
a2
a3
+…+
an
an+1
n
2
(n∈N*)
.…(14分)
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意放缩法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网