题目内容

已知双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为
2
,一条渐近线为l,抛物线C2:y2=4x的焦点为F,点P为直线l与抛物线C2异于原点的交点,则|PF|=(  )
A、2B、3C、4D、5
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:由双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为
2
,可得a=b,从而可得一条渐近线的方程,求出P,F的坐标,即可求出|PF|.
解答: 解:∵双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为
2

∴a=b,
∴一条渐近线为l:y=x,
代入抛物线C2:y2=4x可得P(4,4),
∵抛物线C2:y2=4x的焦点为F(1,0),
∴|PF|=
(4-1)2+42
=5.
故选:D.
点评:本题考查双曲线的几何性质,考查直线与抛物线的位置关系,考查学生的计算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网