题目内容
9.在△ABC中,a2+b2-c2=ab,则cosC=( )| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
分析 利用已知条件通过余弦定理即可求出cosC.
解答 解:由a2+b2-c2=ab,余弦定理得:cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{ab}{2ab}$=$\frac{1}{2}$.
故选:A.
点评 本题主要考查余弦定理的应用.余弦定理在解三角形中应用很广泛,很好的建立了三角形的边角关系,应熟练掌握,属于基础题.
练习册系列答案
相关题目
19.设$\overrightarrow{a_k}=({cos\frac{kπ}{6},sin\frac{kπ}{6}+cos\frac{kπ}{6}}),k∈Z,则\overrightarrow{{a_{2015}}}•\overrightarrow{{a_{2016}}}$=( )
| A. | $\sqrt{3}$ | B. | $\sqrt{3}-\frac{1}{2}$ | C. | $2\sqrt{3}-1$ | D. | 2 |
20.已知函数f(x)在[0,+∞)上递增,$f(\frac{1}{3})=0$,已知g(x)=-f(|x|),满足$g({log_{\frac{1}{8}}}x)>0$的x的取值范围是( )
| A. | (0,+∞) | B. | $(0,\frac{1}{2})∪(2,+∞)$ | C. | $(0,\frac{1}{8})∪(\frac{1}{2},2)$ | D. | $(\frac{1}{2},2)$ |
4.若函数f(x)在区间[m,n]上为增函数,则f(x)在[m,n]上( )
| A. | 只有一个零点 | B. | 至少有一个零点 | C. | 至多有一个零点 | D. | 没有零点 |
19.点A(-2,1)到直线y=2x-5的距离是( )
| A. | 2 | B. | $\frac{10\sqrt{3}}{3}$ | C. | $\frac{8\sqrt{5}}{5}$ | D. | 2$\sqrt{5}$ |