题目内容

已知函数f(x)=lnx,g(x)=
1
2
x2-2x
,当x>1时,不等式k(x-1)<xf(x)+2g′(x)+3恒成立,则整数k的最大值为
 
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:k(x-1)<xf(x)+2g′(x)+3恒成立,等价于k(x-1)<xlnx+2(x-2)+3对一切x∈(1,+∞)恒成立,分离参数,从而可转化为求函数的最小值问题,利用导数即可求得,即可求实数a的取值范围.
解答: 解:因为当x>1时,不等式k(x-1)<xf(x)+2g′(x)+3恒成立,
即k(x-1)<xlnx+2(x-2)+3对一切x∈(1,+∞)恒成立,
亦即k<
xlnx+2x-1
x-1
=
xlnx+1
x-1
+2
对一切x∈(1,+∞)恒成立,
所以不等式转化为k<
xlnx+1
x-1
+2
对任意x>1恒成立.
设p(x)=
xlnx+1
x-1
+2
,则p′(x)=
x-lnx-2
(x-1)2

令r(x)=x-lnx-2(x>1),则r′(x)=1-
1
x
=
x-1
x
>0
所以r(x)在(1,+∞)上单调递增.
因为r(3)=3-ln3-2=1-ln3<0,r(4)=4-ln4-2=2-2ln2>0,
所以r(x)=0在(1,+∞)上存在唯一实根x0,且满足x0∈(3,4),
当1<x<x0时,r(x)<0,即p′(x)<0;
当x>x0时,r(x)>0,即p′(x)>0.
所以函数p(x)=
xlnx+1
x-1
+2
在(1,x0)上单调递减,在(x0,+∞)上单调递增,
又r(x0)=x0-lnx0-2=0,所以lnx0=x0-2.
所以[p(x)]min=p(x0)=
x0lnx0+1
x0-1
+2
=
x0(x0-2)+1
x0-1
=x0-1+2∈(4,5),
所以k<[p(x)]min=x0-1+2∈(4,5)
故整数k的最大值是4. 
故答案为:4
点评:本题考查导数知识的运用,考查函数的单调性与最值,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网