题目内容
4.已知函数f(x)=(2a-1)x+3在R上为减函数,则有( )| A. | a>$\frac{1}{2}$ | B. | a<$\frac{1}{2}$ | C. | a≥$\frac{1}{2}$ | D. | a≤$\frac{1}{2}$ |
分析 根据题意,函数f(x)=(2a-1)x+3为一次函数,由于其在R上为减函数,则有2a-1<0,解可得a的范围,即可得答案.
解答 解:根据题意,函数f(x)=(2a-1)x+3在R上为减函数,
则有2a-1<0,解可得a<$\frac{1}{2}$;
故选:B.
点评 本题考查函数单调性的运用,注意灵活运用常见函数的单调性.
练习册系列答案
相关题目
15.矩形ABCD与矩形ABEF全等,且平面ABCD⊥平面ABEF,AD=2AB=2,若$\overrightarrow{FM}$=λ$\overrightarrow{FB}$,$\overrightarrow{AN}$=μ$\overrightarrow{AC}$,λ,μ∈R,λ+μ=1,则|$\overrightarrow{MN}$|的最小值为( )
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{6}}{6}$ | D. | $\frac{\sqrt{6}}{3}$ |
12.已知定义在R上的函数f(x)满足当∈[2k-1,2k+1)(k∈Z)时f(x)=(x-2k)2,若y=f(x)与g(x)=logax图象上关于y轴对称的点有3对,则a的取值范围是( )
| A. | (0,2) | B. | (1,3) | C. | (2,4) | D. | (3,5) |
19.从100张卡片(编号1~100)中任取一张卡片,则取出的卡片是7的倍数的概率是( )
| A. | $\frac{3}{20}$ | B. | $\frac{13}{100}$ | C. | $\frac{3}{25}$ | D. | $\frac{7}{50}$ |
9.函数f(x)=|x2-a2|(α>0),动点P(m,n)满足f(m)=f(n),且m<n<0,若动点P(m,n)的轨迹直线x+y+1=0没有公共点,则实数a的取值范围是( )
| A. | (0,$\frac{1}{2}$) | B. | ($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$) | C. | ($\frac{\sqrt{2}}{2}$,+∞) | D. | (0,$\frac{1}{2}$]∪[$\frac{\sqrt{2}}{2}$,+∞) |
16.下列函数中在($\frac{π}{4}$,$\frac{3}{4}$π)上为减函数的是( )
| A. | y=-tanx | B. | y=cos(2x-$\frac{π}{2}$) | C. | y=sin2x+cos2x | D. | y=2cos2x-1 |